逐步掌握最佳Ai Agents框架-AutoGen 七 低代码AI助理

前言

在上两篇文章中,我们围绕Uniswap专家知识库打造AI助理。今天我们将以零代码的方式来实现,这要归功于Flowise。我们将使用Flowise构建的工作流,来实现一个同样的AI助理应用。

AI生态

随着AIGC的火爆,有很多非常优秀的框架、工具和服务,构建起来了良好的AI开发生态。Flowise 也是其中之一, 在介绍它之前,我们先来聊聊我们熟悉AI生态里的工具或服务,欢迎大家在评论区补充,好让我也快点学起来, 用起来。如何将这些优秀的AI生态成员工具接我们的项目,这会是我下一步写作的方向。 image.png  上图来自Flowise首页

  • LangChain

LangChain提供python和js两个语言版本,Flowise基于LangChainJS库,零代码完成LLMs应用非常方便。

  • Chroma

ChromaLangChain生态里的向量数据库。将用户查询和资料,使用LLM进行embedding后,计算cosin向量值,就可以快速完成自然语言相似性处理。Chroma封装了这一流程。

  • OpenAI

最为常用的AI大模型,我们也可以使用其它代替。

  • HuggingFace

&emsp全球最大LLMs 社区, 有着丰富的开源大模型、数据集和类似github page 一样的在线大模型服务。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

## Flowise

Flowise是使用非常广泛的AI零代码工具。不需要任何编码,就可以通过拖拽的方式,轻松实现一个chat bot,并支持一键布署。

在这里插入图片描述

  • 安装Floise

FlowiseAI/Flowise: Drag & drop UI to build your customized LLM flow (github.com)中有两种使用方式。在这里我们使用基于node的第一种方案,如果大家对docker比较熟悉,也可以使用第二种。

  1. Install Flowise

    复制代码npm install -g flowise
    
  2. Start Flowise

    sql
    
    复制代码npx flowise start
    

    With username & password

    css
    
    复制代码npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234
    
  • AI助理要使用到的工作流组件

假定大家已经安装好flowise, 并在相关端口本地成功启动flowise。

image.png

通过左上角的加号,我们添加了OPENAI 大模型模块。

image.png

PdfFile、Recursive Character Text Spliter、OpenAI Embeddings、和 In-Momory Vector Store 四个模块的引入,分别解决了Uniswap 白皮书(pdf格式)的加载、1000字符一片的切片、切片的embedding计算和向量存储

image.png

LangChainConversational Retrieval QA Chain模块的加入,集合OPENAI、向量数据库、数据缓存一起,实

### 常见的AI Agent开发工具和框架 #### AutoGen框架 AutoGen提供了一种独特的语法`agents with function calls`,这使得它成为与其他AI工具和服务集成的强大选项。借助这种特性,可以迅速构建并测试AI助理的概念验证版本,尤其是在涉及复杂交互逻辑的情况下[^2]。 #### Flowise低代码平台 作为一款可视化编程环境,Flowise允许开发者无需编写大量代码即可创建功能丰富的应用程序。对于希望加速原型设计过程而不牺牲灵活性的人来说尤为有用。该平台特别适合那些想要快速迭代想法的企业家和技术团队。 #### Agents-Flex Java框架 面向Java社区成员,Agents-Flex旨在简化基于大型语言模型的应用程序开发流程。此框架不仅支持多种主流LLMs,还提供了详尽的API接口文档和支持材料,帮助用户更好地理解和运用其内部机制[^3]。 #### MM-ReAct多模态反应架构 专注于处理多媒体数据集的任务自动化解决方案——MM-React结合了自然语言处理技术和计算机视觉算法的优势。通过精心设计的文字提示(Prompt Design),可以让系统更加精准地解析图片、视频等内容,并据此作出合理的决策或回应[^4]. ```python # 示例:使用MM-ReAct框架进行简单的图像分类任务 from mm_react import ImageClassifier classifier = ImageClassifier(model_name="resnet50") # 初始化预训练好的ResNet50模型实例 result = classifier.predict(image_path="./example.jpg") # 对指定路径下的图片执行预测操作 print(f"The predicted class is {result}.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值