前言
在上两篇文章中,我们围绕Uniswap专家知识库打造AI助理。今天我们将以零代码的方式来实现,这要归功于Flowise。我们将使用Flowise构建的工作流,来实现一个同样的AI助理应用。
AI生态
随着AIGC的火爆,有很多非常优秀的框架、工具和服务,构建起来了良好的AI开发生态。Flowise 也是其中之一, 在介绍它之前,我们先来聊聊我们熟悉AI生态里的工具或服务,欢迎大家在评论区补充,好让我也快点学起来, 用起来。如何将这些优秀的AI生态成员工具接我们的项目,这会是我下一步写作的方向。 上图来自Flowise首页
- LangChain
LangChain
提供python和js两个语言版本,Flowise
基于LangChainJS库,零代码完成LLMs应用非常方便。
- Chroma
Chroma
是LangChain
生态里的向量数据库。将用户查询和资料,使用LLM进行embedding
后,计算cosin向量值,就可以快速完成自然语言相似性处理。Chroma封装了这一流程。
- OpenAI
最为常用的AI大模型,我们也可以使用其它代替。
- HuggingFace
&emsp全球最大LLMs 社区, 有着丰富的开源大模型、数据集和类似github page 一样的在线大模型服务。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

Flowise是使用非常广泛的AI零代码工具。不需要任何编码,就可以通过拖拽的方式,轻松实现一个chat bot,并支持一键布署。
- 安装Floise
在FlowiseAI/Flowise: Drag & drop UI to build your customized LLM flow (github.com)中有两种使用方式。在这里我们使用基于node的第一种方案,如果大家对docker比较熟悉,也可以使用第二种。
-
Install Flowise
复制代码npm install -g flowise
-
Start Flowise
sql 复制代码npx flowise start
With username & password
css 复制代码npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234
- AI助理要使用到的工作流组件
假定大家已经安装好flowise, 并在相关端口本地成功启动flowise。
通过左上角的加号,我们添加了OPENAI 大模型模块。
PdfFile、Recursive Character Text Spliter、OpenAI Embeddings、和 In-Momory Vector Store 四个模块的引入,分别解决了Uniswap 白皮书(pdf格式)的加载、1000字符一片的切片、切片的embedding计算和向量存储
LangChain
的Conversational Retrieval QA Chain
模块的加入,集合OPENAI、向量数据库、数据缓存一起,实