836. 矩形重叠
矩形以列表 [x1, y1, x2, y2] 的形式表示,其中 (x1, y1) 为左下角的坐标,(x2, y2) 是右上角的坐标。
如果相交的面积为正,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。
给出两个矩形,判断它们是否重叠并返回结果。
示例 1:
输入:rec1 = [0,0,2,2], rec2 = [1,1,3,3]
输出:true
示例 2:
输入:rec1 = [0,0,1,1], rec2 = [1,0,2,1]
输出:false
说明:
两个矩形 rec1 和 rec2 都以含有四个整数的列表的形式给出。
矩形中的所有坐标都处于 -10^9 和 10^9 之间。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rectangle-overlap
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法一:比较点的坐标,如果两个矩形不重叠,则一个矩形一定在另一个矩形的四周
class Solution {
public boolean isRectangleOverlap(int[] rec1, int[] rec2) {
return !(rec2[2]<=rec1[0]//如果rec2的右上顶点的横坐标小于等于rec1的左下顶点的横坐标,则rec2一定在rec1的左边
||rec2[3]<=rec1[1]//如果rec2的右上顶点的纵坐标小于等于rec1的左下顶点的纵坐标,则rec2一定在rec1的下边
||rec1[2]<=rec2[0]//如果rec1的右上顶点的横坐标小于等于rec2的左下顶点的横坐标,则rec2一定在rec1的右边
||rec1[3]<=rec2[1]);//如果rec1的右上顶点的纵坐标小于等于rec2的左下顶点的纵坐标,则rec2一定在rec1的上边
}
}
方法二:比较线段,如果两个矩形重叠,那么它们重叠的区域一定也是一个矩形,那么这代表了两个矩形与 x 轴平行的边(水平边)投影到 x轴上时会有交集,与 y轴平行的边(竖直边)投影到 y 轴上时也会有交集。因此,我们可以将问题看作一维线段是否有交集的问题。
class Solution {
public boolean isRectangleOverlap(int[] rec1, int[] rec2) {
return (Math.min(rec1[2],rec2[2])>Math.max(rec1[0],rec2[0])//如果两个矩形右上顶点横坐标的最小值大于两个矩形左下顶点横坐标的最大值,则二者一定有交集
&&Math.min(rec1[3],rec2[3])>Math.max(rec1[1],rec2[1]));//如果两个矩形右上顶点纵坐标的最小值大于两个矩形左下顶点纵坐标的最大值,则二者一定有交集
}
}