论文精读:FCLLM-DT:利用大语言模型增强联邦持续学习,以支持基于数字孪生的工业物联网

一、问题背景(Why)

1.存在的挑战

修复异常数据,管理传感器故障,并增强隐私保护

大多数现有的研究都集中在基于异常数据的故障类型和原因分析上,但往往忽略了对传感器故障引起的误诊的预防。我们的方法解决了这一空白。

(1)机械传感器可能生成异常数据,导致模型训练的质量不佳;

(2)传感器故障可能导致连续数据流中断、数据丢失,在训练过程中无法快速连续地提供数据,从而阻碍模型训练,可能导致模型训练失败。

(3)为了优化模型性能,工厂通过联合其本地模型以形成全局模型来进行协作,可能会带来隐私泄露的风险。

二、解决方法(What):FCLLM-DT

1.主要贡献

(1)通过将物理承载模型与Dynamic Bandit Tree(DBT)相结合,引入了一种用于修复异常感知的DT技术,主动提高了感知数据的保真度,从而优化了其对局部模型训练的适应性。

(2)提出了一种区域特定的RAG辅助LLM生成虚拟数据,利用历史传感器数据来构建RAG系统。这种方法确保了在传感器故障的情况下提供持续的传感数据流以支持持续学习。

(3)FCLLM-DT方案是通过DT、RAG辅助的LLM和FCL的集成而制定的。该方案基于DT和RAG辅助的LLM的数据改进。它采用FCL来促进高度准确的故障诊断模型的开发,同时确保跨分布式工厂的本地数据隐私的保护

2.现有的诊断模型方法:相关工作

1.修复异常数据:DT数字孪生

应对的问题:工业上数据采集过程容易受到各种形式的干扰,这可能导致异常数据的产生,在后续应用中利用这些数据之前必须对这些异常数据进行严格的识别和补救,以确保数据的完整性和可靠性。

现有方法存在的问题:在许多领域,特别是时间序列数据中,识别和替换异常是可行的。同时,他们提出的异常处理方法通常是特定于特定领域的,同时,异常校正方法通常依赖于异常的上下文或数据的统计特征,当异常数据段较长时,可能会损害估算数据的真实性

解决方法:

DT通过接收传感器数据,在人工智能、机器学习和数据分析的帮助下,在数字空间中映射物理实体。随着数据的接收,DT随物理实体的变化而变化[41],DT在运行维护、故障检测等方面有很好的应用,

对于大型机械中的隐形键轴承,可以使用DT来模拟隐形轴承,这有两大好处:1)故障识别精度更高。2)通过DT监测运行状态,无需拆卸大型机械的关键轴承。

2.解决传感器故障导致的数据丢失问题:RAG增强LLM数据生成

现有的不足:

连续生成数据时,LLM更容易出现幻觉问题,导致生成的内容偏离现实。这个问题在需要连续生成数据来修复异常的轴承数据中变得更加重要。

数据主要以时间序列格式组织,探索RAG用于生成此类数据的研究仍然相对欠发达。

解决方法:

与GAN框架相比,RAG结合LLM在需要整合大量外部知识和最新信息的任务中具有优势。RAG适用于处理复杂和高度互联的数据集,以及探索数据集内更深层次的关系,特别是在多层分析和推理方面,它可以显著提升LLM对问题的理解及其答案的精确性。

引入了RAG,作为一种通过集成外部知识源来增强LLM能力的技术。RAG通过引用补充信息来增强LLM性能,从而促进更准确和上下文适当的响应的生成。

3.实现工厂区域间的交互:IIoT中的联邦持续学习FCL

现有的方法:

在工业物联网的轴承故障诊断任务中,FL被用于解决工业协作分布式计算中的数据孤岛问题和隐私问题。然而,这些方法在非独立同分布的数据集上的性能仍然会受到影响,同时,当客户端需要对一系列非独立同分布的任务进行学习时,现有的联邦学习方法无法保留数据流上先前任务中学习到的知识.

解决方法:

FCL:其特征在于在延长的学习周期内连续聚合模型参数,需要用新数据更新模型,而不需要一致地访问历史数据和先前获得的知识。

三、实现过程(How)

1.系统框架

(1)Bearing DT组件模拟工厂内生产运行过程的物理模型,Bearing DT模拟轴承数据的运行机制,建立一一对应关系。当设备传感器输入异常数据时,Bearing DT将物理模型与DBT集成,提高用于局部模型训练的传感数据的精度和质量。

(2)RAG系统使用历史感测数据构建,并在传感器故障的情况下帮助在线LLM动态生成虚拟数据。RAG系统将此生成的数据传递给DT,使DT能够在各种操作条件下向本地模型提供连续的数据流。

(3)FCL中的本地模型可以对DT细化的数据进行训练,并由RAG辅助的LLM生成。本地模型利用边缘服务器的计算能力,并经过训练以适应各个工厂的独特运营特征。随着新数据的出现,本地模型不断从中学习,适应不断变化的数据分布,并在联合聚合过程中将其更新贡献给全局模型。

在系统的操作工作流程中,传感器将收集的真实世界数据传输到DT模块和RAG-LLM模块,以构建轴承的DT并为LLM提供数据支持。当在传感器数据中检测到异常时,DT向RAG发起请求以基于异常数据的上下文生成数据,促进预测数据修复。DT连续地提供数据用于在边缘处训练本地模型。各种客户端的本地模型与全局服务器通信,通过联邦持续学习来适应和学习新任务,从而实现对连续数据流的故障诊断。

2.基于数字孪生的异常数据修复

1)异常数据识别与修正阶段:采用神经网络驱动的数字孪生技术,建立轴承的动态仿真模型,实现异常数据的有效识别与修正。

2)故障数据的特征提取:从DT传输到本地模型的数据中提取特征,增强故障数据特征,使本地模型能够更准确地进行故障诊断。

先从轴承收集加速度数据,并将其转换为傅立叶频域进行频谱分析。再应用DBT方法来确定最佳频带边界。循环谐波噪声比(C)被用作故障指标来推断Meyer小波滤波器的边界。最后将优化的带状信号解调为同步包络谱

3.RAG辅助LLM的虚拟数据生成

在传感器发生故障无法采集数据的情况下,检索由历史传感器数据构建的知识库,通过LLM生成虚拟数据集,并提供给DT。

1)RAG系统建立知识库,当DT无法接收到传感器的运行数据时,RAG检索该传感器的故障前历史数据

2)当查询知识库时,RAG系统提供足够的历史数据知识窗口,确保LLM具有足够的上下文知识以生成准确的数据。

3)RAG采用个滑动窗口机制调整提示,用上下文窗口生成数据作为连接下文的的单元从而进行滑动,从而解决幻觉问题

4)生成新数据之后,删除队列前端的旧数据,从而累计生成虚拟队列

4.基于联邦连续学习的轴承故障诊断

1)通过构造全局轴承故障诊断模型来初始化整个模型,然后将构造的全局模型发送到分布式工厂

2)工厂通过使用DT连续提供的时间序列数据来训练本地模型,以细化轴承故障诊断并将参数发送到服务器。

3)云服务器上的全局模型通过加权平均对局部参数进行聚合,并将得到的全局参数θG发送给部署在边缘服务器上的局部模型,增强了对轴承故障的准确诊断能力。

4)在局部更新过程中,局部模型采用全局参数与特定任务的局部参数选择性结合的策略,对局部模型进行优化和更新。

5.实验

数据集

CWRU 和MFPT数据集

B 代表轴承内的滚珠,IR 表示内圈,OR 表示轴承的外圈。

评估指标

1)数字孪生DT模型纠正异常数据能力的对比分析

用欧几里得距离对数据进行校正,评估校正后的数据与真实的数据之间的相似性。经过DT处理的数据平均值低于0.3

local是本地模型,centralized是全局模型

2)RAG辅助大语言模型生成数据的准确性

通过计算虚拟数据和原始数据之间的欧几里德距离(其中较小的值表示较大的相似性),我们评估虚拟数据与真实的数据的接近程度。由表可知相比于完全虚拟的数据,RAG-LLM处理后的数据更接近

3)FCL诊断轴承故障的有效性

a)不同方案在不同数据集上的轴承故障诊断准确性比较

b)在新任务和现有任务上训练的轴承故障诊断模型

c)FCL的记忆能力

两个模型在最后一轮任务学习后在整个测试集上的分类

四、思考

1.RAG和微调之间的区别、各自的优点,可不可以在LLM 上又用RAG又用微调

  • 先微调再应用RAG:可以通过微调使LLM更好地理解特定领域的术语和表达方式,然后再利用RAG来增强模型的信息检索能力,从而在特定领域内提供更准确的回答或解决方案。

  • 结合两者的优势:这种方式可以使模型既具有对特定领域深入的理解(通过微调),又能够动态访问外部知识库(通过RAG)

2.DT是如何进行异常数据识别的

DT则是用于修复异常传感器数据,即在传感器产生异常数据时,DT会根据历史数据和当前环境条件,生成一组更符合实际情况的数据,并将其替代原始异常数据,以便模型能够更好地学习和适应新的环境变化。

3.KNN和line代表什么意思,差异这么大如何解释

这两个算法是常用的异常数据处理方法。KNN算法是一种基于距离度量的分类算法,它可以根据相似度度量来判断一个样本属于哪个类别;而线性插值算法则是一种常见的数值计算方法,它可以利用已知数据点之间的线性关系来估计缺失数据点的值。

4.t=8时下拐如何解释

第8轮识别准确率的下降归因于当时发生的全局参数聚合,这可能会阻止局部模型充分学习数据的特征,导致暂时下降。随着训练的进行,聚合策略将逐渐增强模型性能,因为全局模型可以从多个局部模型中学习更广泛的数据特征。

5.如何解释centralized比DT高,virtual data这块DT比 No DT低,centralized 的情况普遍好于DT assisted

在 virtual data 的情况下,No DT 比 DT 高的原因可能是由于虚拟数据生成过程中没有考虑到传感器故障的影响,导致生成的数据不够真实,从而影响了诊断结果的准确性。

在 centralized 的情况下,全局模型可以更好地控制数据的质量和完整性,因为所有的数据都被整合到了一起。这也可以提高故障诊断的准确性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值