hello~~~大家好,这里是o1000000000的数学课堂,这篇文章带你学习和梳理初中绝对值的所有知识,建议点赞收藏关注!
以下分几个模块,大模块内有小分组,请仔细阅读,可以读完一部分,回到目录在继续哦。
初中数学详解——绝对值的所有初中知识(下)链接:初中数学详解——绝对值的所有初中知识(下)
目录
1.绝对值的化简
模块一:绝对值的概念及性质:
知识表格
定义 | 实例 |
绝对值: 绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。 | “|5|”表示数轴上代表5得数到原点的距离。 |
绝对值的非负性: 可以用下式表示:|a|≥0,这是绝对值非常重要的性质! | |a|+1≥1 |
绝对值的代数意义: |a|=a,(a>0) 0,(a=0) -a,(a<0) | |a|=a,则a≥0,|a|=-a,则a≤0 |
解含有绝对值的方程: 若|x|=a(a≤0),则x=±a 若|a|=|b|,则a=b或a=-b | |x|=3,则x=±3 |
例题1:
若|m-3|=m-3,则m的取值范围为_____?
答案:m≥3
例题2:
若|x-1|=|2x+1|,则x=____?
答案:-2或0(注意,不能吧或写成“/”,“/”表示谁除以谁!)
例题3:
当x=______时,||x-5|-3|有最_____值,是______。
答案:1) 2或8 2)小 3)0
模块二:化简求值
知识表格
已知范围去绝对值: 直接根据绝对值的代数意义绝对值 |a|=a(a≥0),-a(a<0) | 示例: 已知1≤x<5则|1-x|+|x-5|=____. 解:原式=x-1+5-x=4 |
零点分段: 使绝对值为零的未知数的值称为零点。 以零点为界对未知数的取值进行分段分类讨论 从而展开绝对值成为零的分段讨论法 | 示例: 化简:|x-1|+|x+1| 分析:有两个零点,分别为x=-1,x=1 解:①当x≤-1时,原式=1-x+(-x-1)=-2x; ②当-1<x≤1时,原式=1-x+x+1=2; ③当x>1时,原式=x-1+x+1=2x; |
a>0时, a<0时, | 实例: 化简: 解:①当ab均为正时,原式=1+1=2 ②当ab一正一负时,原式=1+(-1)=0 ③当ab均为负时,原始=-1-1=-2 |
例题1:
三个数
的积为负数,和为正数,且











,求
的值。
答案:1
例题2:使用零点分段讨论法,求
的最大值和最小值。
答案:
以上是绝对值的所有初中知识(上)!