使用huggingface的text embedding models

文章展示了如何使用fromlangchain库中的功能,如HuggingFaceEmbeddings进行文本嵌入、FAISS进行向量存储和检索,以及Tongyi模型进行问答。它演示了从网页抓取文档、创建索引、查询和生成答案的过程,以及切换到all-MiniLM-L6-v2模型的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Tongyi
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import HuggingFaceEmbeddings
import os
import time
os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
llm = Tongyi()

from langchain_community.document_loaders import UnstructuredURLLoader

embeddings = HuggingFaceEmbeddings()

# 记录开始时间
start_time = time.time()
text = "This is a test document."

query_result = embeddings.embed_query(text)

end_time = time.time()
# 计算并打印函数执行时间
execution_time = end_time - start_time
print(f"函数执行时间: {
     execution_time} 秒"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值