from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Tongyi
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import HuggingFaceEmbeddings
import os
import time
os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
llm = Tongyi()
from langchain_community.document_loaders import UnstructuredURLLoader
embeddings = HuggingFaceEmbeddings()
# 记录开始时间
start_time = time.time()
text = "This is a test document."
query_result = embeddings.embed_query(text)
end_time = time.time()
# 计算并打印函数执行时间
execution_time = end_time - start_time
print(f"函数执行时间: {
execution_time} 秒"
使用huggingface的text embedding models
于 2024-02-27 16:05:23 首次发布