这段代码的主要目的是使用 HuggingFaceBgeEmbeddings
模型将文本转化为向量表示,通常用于文本检索等任务。下面我详细解释一下各个部分:
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma
# embedding model: m3e-base
model_name = "moka-ai/m3e-base"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embedding = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为文本生成向量表示用于文本检索"
)
1. HuggingFaceBgeEmbeddings
是什么?
HuggingFaceBgeEmbeddings
是一个类,用于加载和使用 Hugging Face 上的预训练模型,将文本转化为向量。向量化文本后,可以将文本表示为数值形式,这在自然语言处理(NLP)的各种任务中非常有用,如文本检索、文本分类、聚类等。
2. 为什么要使用 HuggingFaceBgeEmbeddings
?
HuggingFaceBgeEmbeddings
通过 Hugging Face 提供的模型,可以轻松将文本转换为向量。这些向量保留了文本的语义信息,使其在计算相似性、搜索和推荐系统中非常有用。
3. 代码详解
-
model_name = "moka-ai/m3e-base"
: 这是指定的 Hugging Face 模型名称,moka-ai/m3e-base
是一个中文预训练模型,专门用于生成文本的向量表示。 -
model_kwargs = {'device': 'cpu'}
: 这是指定模型加载时的参数。'device': 'cpu'
表示在 CPU 上运行模型。如果有 GPU,可以将其改为'device': 'cuda'
以加速处理。 -
encode_kwargs = {'normalize_embeddings': True}
: 这是在编码时使用的参数。normalize_embeddings
参数如果设置为True
,表示在生成的向量上应用标准化,使向量的长度归一化(即向量的范数为1)。这通常有助于在计算相似性时获得更稳定的结果。 -
embedding = HuggingFaceBgeEmbeddings(...)
: 这段代码初始化了一个HuggingFaceBgeEmbeddings
对象,并传入了模型名称、模型参数和编码参数。 -
query_instruction="为文本生成向量表示用于文本检索"
: 这部分是模型用于生成向量的指令。它告诉模型这个任务是生成文本的向量表示,专门用于文本检索。
总结
HuggingFaceBgeEmbeddings
是一个强大的工具,能够利用 Hugging Face 上的预训练模型将文本转化为向量表示。通过这段代码,你可以加载一个指定的预训练模型,并配置它以适合特定的任务,如文本检索。这个向量表示是文本的数值化形式,在许多 NLP 任务中至关重要。
不加query_instruction="为文本生成向量表示用于文本检索可以吗?
可以不加 query_instruction="为文本生成向量表示用于文本检索"
,但这取决于你使用的具体模型和任务需求。
1. 作用说明:
query_instruction
参数的作用是提供一个指令,用于引导模型在生成向量表示时专注于特定任务。在这里,指令告诉模型生成适合文本检索的向量。- 如果你不提供这个参数,模型将使用默认的方式生成向量,这通常也是可以接受的,但它可能不会特别优化针对文本检索的任务。
2. 什么时候可以不加?
- 如果你只是进行一般的向量生成任务,或者对模型的默认行为满意,那么可以不加这个指令。
- 对于一些通用的预训练模型,即使不提供特定指令,模型也能生成有用的向量表示。
3. 什么时候建议加上?
- 如果你有特定的任务需求,比如文本检索、文本分类等,提供一个明确的指令可以帮助模型生成更相关的向量表示,从而提高任务的效果。
- 在使用一些专门设计的模型时,如适用于多任务学习的模型,提供明确的指令通常会提高模型在特定任务上的表现。
总结
你可以不加 query_instruction
参数,但是否添加取决于你的具体需求和模型的默认行为。如果你发现模型在不加指令的情况下效果不佳,或者希望模型在特定任务上有更好的表现,建议添加相应的指令。
#加上 `query_instruction` 的输出结果
[Document(metadata={'source': './藜.txt'}, page_content='播种方法\n播种期一般选在5月中旬、气温在15-20℃时为宜。播种量为每亩0.4千克。播种深度1-2厘米。一般使用耧播,也可采用谷子精量播种机播种。行距50厘米左右,株距15-25厘米。 [4]'), Document(metadata={'source': './藜.txt'}, page_content='播种方法\n播种期一般选在5月中旬、气温在15-20℃时为宜。播种量为每亩0.4千克。播种深度1-2厘米。一般使用耧播,也可采用谷子精量播种机播种。行距50厘米左右,株距15-25厘米。 [4]')]
#不加的输出结果
[Document(metadata={'source': './藜.txt'}, page_content='播前准备\n地块选择:应选择地势较高、阳光充足、通风条件好及肥力较好的地块种植。藜麦不宜重茬,忌连作,应合理轮作倒茬。前茬以大豆、薯类最好,其次是玉米、高粱等。 [4]\n施肥整地:早春土壤刚解冻,趁气温尚低、土壤水分蒸发慢的时候,施足底肥,达到土肥融合,壮伐蓄水。播种前每降1次雨及时耙耱1次,做到上虚下实,干旱时只耙不耕,并进行压实处理。一般每亩(667平方米/亩,下同)施腐熟农家肥1000-2000千克、硫酸钾型复合肥20-30千克。如果土壤比较贫瘠,可适当增加复合肥的施用量。 [4]\n播种方法\n播种期一般选在5月中旬、气温在15-20℃时为宜。播种量为每亩0.4千克。播种深度1-2厘米。一般使用耧播,也可采用谷子精量播种机播种。行距50厘米左右,株距15-25厘米。 [4]'), Document(metadata={'source': './藜.txt'}, page_content='播前准备\n地块选择:应选择地势较高、阳光充足、通风条件好及肥力较好的地块种植。藜麦不宜重茬,忌连作,应合理轮作倒茬。前茬以大豆、薯类最好,其次是玉米、高粱等。 [4]\n施肥整地:早春土壤刚解冻,趁气温尚低、土壤水分蒸发慢的时候,施足底肥,达到土肥融合,壮伐蓄水。播种前每降1次雨及时耙耱1次,做到上虚下实,干旱时只耙不耕,并进行压实处理。一般每亩(667平方米/亩,下同)施腐熟农家肥1000-2000千克、硫酸钾型复合肥20-30千克。如果土壤比较贫瘠,可适当增加复合肥的施用量。 [4]\n播种方法')]
from langchain.vectorstores import Chroma这里的Chroma和Chromadb一样吗
Chroma
是 LangChain
库中的一个模块,用于将文本向量存储在向量数据库中,以便进行高效的相似性搜索。而 Chroma
本质上是对 ChromaDB
(一个轻量级的开源向量数据库)的封装。
1. Chroma
vs ChromaDB
:
Chroma
是LangChain
中的类,专门用于处理文本向量的存储和检索。它提供了与LangChain
框架兼容的接口,使得使用向量数据库的操作更加方便。ChromaDB
是实际执行向量存储和检索的数据库引擎。它可以独立使用,也可以通过LangChain
的Chroma
类进行访问和操作。
2. 如何使用:
- 在
LangChain
中,使用Chroma
类来处理向量存储,底层依赖的就是ChromaDB
。 - 你可以直接在
LangChain
中通过Chroma
来进行操作,而不需要直接与ChromaDB
交互。
3. 示例:
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
# 加载向量嵌入模型
embedding = HuggingFaceEmbeddings()
# 创建Chroma向量存储实例
vectorstore = Chroma(embedding_function=embedding, persist_directory='./chroma_db')
# 插入文本数据
vectorstore.add_texts(["文本1", "文本2", "文本3"])
# 查询相似文本
results = vectorstore.similarity_search("查询文本")
总结
Chroma
和 ChromaDB
之间的关系是封装与被封装的关系。Chroma
是 LangChain
框架中的工具,方便开发者使用 ChromaDB
进行文本向量的存储和查询。
load data to Chroma db
db = Chroma.from_documents(documents, embedding)
similarity search
db.similarity_search(“藜一般在几月播种?”)
据我所知similarity_search和from_documents这两个方法都属于Chroma类,但是为什么similarity_search调用的时候不是Chroma.similarity_search呢?
在 Python 中,当我们定义类时,会创建类的方法(比如 similarity_search
和 from_documents
)。这些方法在类的实例上调用,而不是直接通过类本身调用。这种设计是面向对象编程(OOP)的核心概念之一。
1. 类方法 vs. 实例方法
- 类方法:直接绑定到类,可以通过类名调用。类方法通常用
@classmethod
装饰器来定义。 - 实例方法:绑定到类的实例(即对象),需要通过实例来调用。实例方法通常访问和操作实例的属性或其他方法。
2. 为什么 similarity_search
是实例方法?
similarity_search
是Chroma
类的一个实例方法,它需要操作已经初始化的数据库实例来执行相似性搜索。- 当你使用
Chroma.from_documents(documents, embedding)
时,你创建了一个Chroma
类的实例db
,并将数据加载到其中。此时,db
作为Chroma
的实例,拥有所有属于Chroma
类的实例方法,包括similarity_search
。 - 之后,你通过
db.similarity_search("藜一般在几月播种?")
来调用该方法,这意味着你在操作特定的Chroma
数据库实例,而不是在操作类本身。
3. 代码示例解释
# 从文档创建 Chroma 数据库实例
db = Chroma.from_documents(documents, embedding)
# 在该数据库实例上执行相似性搜索
results = db.similarity_search("藜一般在几月播种?")
db = Chroma.from_documents(documents, embedding)
:这行代码调用了Chroma
类的一个类方法from_documents
,它返回了一个Chroma
类的实例db
。db.similarity_search(...)
:这是在db
实例上调用similarity_search
实例方法。它在特定的Chroma
数据库实例上执行相似性搜索,并返回结果。
总结
similarity_search
是一个实例方法,需要一个具体的Chroma
对象(即db
)来调用。- 这是因为
similarity_search
需要操作特定的数据库实例中的数据,而不是在整个类的上下文中操作。