wannafly挑战赛11 E 白兔的刁难

题目:wannfly 11 E 白兔的刁难

题意:

给定 n n n, k k k,对于 t ∈ [ 0 , k ) t\in [0,k) t[0,k)
a n s t ans_t anst = ∑ k ∣ i , 0 ≤ i + t ≤ n , , ( n i + t ) \sum_{k|i,0 \le i+t \le n,},\binom{n}{i+t} ki,0i+tn,,(i+tn)

sol:

官方题解:
题目要求的实际上就是,对于任意 t,把 ( 1 + x ) n (1 + x)^n (1+x)n展开后,x 的指数模 k 为 t的所有项的系数之和。那么我们可以利用 ω ? ? = 1 ω_?^? = 1 ωnn=1,带入 x = ω ? 1 x=ω_?^1 x=ωn1。那么 x 的指数模k相同的项就会自动合并。
把1 + x进行长度为 k 的 DFT,然后每个数求 n 次幂,再 IDFT 回来就是答案。
复杂度 k l o g m i n ( n , 998244352 ) + k l o g k klogmin(n,998244352)+klogk klogmin(n,998244352)+klogk。既然是求 n 次幂,那么 n 可以直接对
998244352 取模,那个 10{106}是吓唬人的。

对于长度为 k k k( k k k为2的次幂),求循环卷积只需做长度为 k k k D F T DFT DFT + I D F T IDFT IDFT。用 D F T DFT DFT转换为点值后直接快速幂后再 I D F T IDFT IDFT后就是答案。用扩展欧拉定理处理幂次即可。

code:

#include <bits/stdc++.h>
 
using namespace std;
typedef long long ll;
 
const int maxn = 2e6+10;
const int mod = 998244353;
const int P = mod;
const int _mod = mod -1;
int g = 3;
 
char s[maxn];
 
inline void Add(ll& x,ll y,int _P){
    x += y;
    if(x >= P) x -= _P;
}
 
inline void Mul(ll& x,ll y,int _P){
    x *= y;
    if(x >= P) x %= _P;
}
 
int qpow(ll a, ll b){
    ll sum = 1;
    while (b){
        if (b & 1) Mul(sum,a,mod);
        b >>= 1;
        Mul(a,a,mod);
    }
    return sum;
}
 
int Inv(ll a){
    return qpow(a,mod - 2);
}
 
struct NTT
{
    int rev[maxn], dig[maxn];
    int N, L;
 
    void init_rev(int n){
        for(N=1,L=0;N<n;N<<=1,L++);
        L--;
        for(int i = 1;i<N;i++) rev[i] = (rev[i>>1]>>1)|((i&1)<<L);
    }
 
    void DFT(int a[], int flag)
    {
        for (int i = 0; i < N; i++)
            if (i<rev[i])   swap(a[i], a[rev[i]]);
        for (int l = 2; l <= N; l <<= 1){
            int wn;
            if (flag == 1)
                wn = qpow(g, (P - 1) / l);
            else
                wn = qpow(g, P - 1 - (P - 1) / l);
            for (int k = 0; k < N; k += l){
                int w = 1;
                int x, y;
                for (int j = k; j < k + l / 2; j++)
                {
                    x = a[j];
                    y = (ll)a[j + l / 2] * w % P;
                    a[j] = (x + y) % P;
                    a[j + l / 2] = (x - y + P) % P;
                    w = (ll)w * wn % P;
                }
            }
        }
        if (flag == -1)
        {
            int inv = Inv(N);
            for (int i = 0; i < N; i++)
                a[i] = 1LL * a[i] * inv % P;
        }
    }
}ntt;
 
int a[maxn];
 
int main(){
    scanf("%s",s);
    ll n = 0;
    int len = strlen(s);
    for(int i = 0;i<len;i++){
        Mul(n,10,_mod);
        Add(n,s[i] - '0',_mod);
    }
    int k;
    scanf("%d",&k);
    ntt.init_rev(k);
    a[0] = a[1] = 1;
    ntt.DFT(a,1);
    for(int i = 0;i<k;i++) a[i] = qpow(a[i],n);
    ntt.DFT(a,-1);
    int ans = 0;
    for(int i = 0;i<k;i++) {
        // cout<<i<<' '<<a[i]<<endl;
        ans ^= a[i];
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值