iradon函数
I=iradon(R,theta,interp,filter,frequency_scaling,output_size)
iradon函数是基于R-L滤波器的滤波反投影法。实现重建图像的过程如下:
- 把投影矩阵R转换到频域,生成fft(R);
- fft(R)和滤波函数H相乘,得到滤波后的频域投影矩阵fft(R)*H;
- 把fft(R)*H 转换到空域,得到空域中的滤波后的投影矩阵R’=ifft(fft(R)*H );
- R’插值后,得到处理好的投影矩阵R’’;
- 直接反投影得到重建图像矩阵I。
参数介绍
-
R是投影矩阵。
-
theta可以是一个包含所有扫描角度的向量,这时每两个相邻角度间隔相等;也可以是一个标量值,等于相邻两个扫描角度的间隔。
-
interp是插值函数,有以下几种差值方式可以选择:
nearest:最邻近插值方法(nearest neighbor interpolation)。这种插值方法在已知数据的最邻近点设置插值点,对插值点的数值进行四舍五入,对超出范围的数据点返回NaN。
linear:线性插值(linear interpolation),这是interp中的默认数值。该方法采用直线将相邻的数据点相连,对超出数据范围的数据点返回NaN。(执行速度较快,有足够的精度,最为常用。)
spline:三次样条插值(cubic spline interpolation),该方法采用三次样条函数获取插值数据点,在已知点为端点的情况下,插值函数至少具有相同的一阶和二阶导数。(执行速度最慢,精度高,最平滑。)
pchip:分段三次厄米多项式差值(piecewise cubic Hermite interpolation)。
cubic:三次多项式插值,与分段三次厄米多项式插值方法相同。
v5cubic:MATLAB5中使用的三次多项式插值。
nearest 最快的插值方法,但是数据平滑方面最差,数据是不连续的。
cubic 较慢,精度高,平滑度好,当希望得到平滑的曲线时可以使用该选项。 -
filter是滤波函数,有以下几种滤波器可以选择:
滤波函数H | 含义 |
---|---|
none | 没有滤波 |
ram-lak | R-L滤波函数的傅里叶函数和频域中每个角度的投影相乘,实现滤波 |
Shepp-Logan | sinc函数*R-L函数—— |
Cosine | cosine函数*R-L函数—— |
Hamming | Hamming函数*R-L函数—— |
Hann | hann函数*R-L函数—— |
其他 | 设定的函数*R-L函数—— |
- frequency_scaling是一个标量值,取值范围[0,1],通过缩放滤波函数的频率修改滤波函数。
默认值为1。如果取值小于1,则滤波函数的频率在归一化后被压缩到适合[0,frequency_scaling]的范围。
比如默认值为1时,滤波函数的窗口为[0,10Hz],frequency_scaling=0.5时,滤波函数的窗口为[0,20Hz]。(待确定)在频域中,频率若大于frequency_scaling对应的频率,则该频率处的函数值为0。
- output_size是一个标量,用来规定重建图像的行数和列数。
默认等于2 * floor(size(R,1)/(2*sqrt(2)))。改变output_size会改变重建图像的大小,但是不会改变像素点的个数。
radon函数
[R,Xp]=radon(I,theta,N)
参数介绍
如果theta是标量,返回R是列向量 ,表示theta角度下图像I的radon变换。
如果theta是向量,返回R是矩阵,每一列表示某一theta角度下图像I的radon变换。
忽略theta,则默认为是0:179的向量。
返回行向量Xp,投影数据R的每一行的射线坐标。
已设N,则用N个点计算投影, 且R有N行。
未设N,则用 2*ceil(norm(size(I)-floor((size(I)-1)/2)-1))+3 个点计算投影,即使射线通过图像对角线,这个值也足够。
另: 调用c程序radonc( )实现radon变换
mfilename函数中,I是第一个变量,theta是第二个变量,N是第三个变量。如果生成投影的行维度r不等N,则进行N等分,线性插值,变成行维度为N的投影。
附上用c++实现的代码:
#include <math.h>
#include "mex.h"
static void radon(double *pPtr, double *iPtr, double *thetaPtr, int M<