ner模型性能实验

基础介绍

各种ner模型预测时间性能和效果各异,这里通过实验对比分析给出选用建议

实验对比

纯模型F1

加规则字典后F1

长度32

长度510

长度2000

qrnn模型

0.837

0.878

CPU 8毫秒 GPU 33毫秒

CPU在线服务 20毫秒

CPU 102毫秒

CPU在线服务 200毫秒

CPU 377毫秒

lstm模型

0.906

0.926

CPU 10毫秒 GPU 37毫秒CPU在线服务 27毫秒

CPU 138毫秒,GPU 543毫秒

CPU在线服务 350毫秒

CPU 530毫秒

1层bert

0.803

0.874

CPU 6毫秒 GPU 5毫秒

CPU在线服务 15毫秒

CPU 47毫秒,GPU 12毫秒

CPU在线服务 110毫秒

2层bert

0.875

0.915

CPU 11毫秒 GPU 8毫秒CPU在线服务 25毫秒

CPU 81毫秒,GPU 16毫秒

CPU在线服务 170毫秒

3层bert

0.906

0.934

CPU 15毫秒 GPU 11毫秒

CPU在线服务 40毫秒

CPU 115毫秒,GPU 21毫秒

CPU在线服务 240毫秒

6层bert

0.936

0.951

CPU 28毫秒 GPU 20毫秒CPU在线服务 70毫秒

CPU 187毫秒,GPU 34毫秒

CPU在线服务 400毫秒

12层bert模型

0.945

0.956

CPU 52毫秒 GPU 39毫秒

CPU在线服务 240毫秒

CPU 368毫秒,GPU 62毫秒

CPU在线服务 750毫秒

分析总结

  • 6层bert在F1指标相比12层bert下降较小,而性能翻倍提升,在有GPU的环境中是最佳选择
  • 在不愿使用GPU环境情况下,可选择3层bert,其次是lstm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值