Android、Symbian系统手机通讯录和Google Gmai同步

下面我们来说说如何将我们的Android手机的通讯录和Google进行同步,打开你手机的通讯录,仍然是空白。按手机上的菜单键,选择【账户】,把你的Gmail账户输入进去,稍等片刻,手机就会自动同步你的Gmail邮箱中的联系人信息。没有Gmail账户的朋友,既然用了Android,那么强烈建议注册一个,通过在Gmail里增删联系人,你的手机通讯录会同步修改。同时,即使日后再次刷机也不用怕,只需再次同步一次,所有信息就都回来了。


    相信有不少人和笔者一样,上一个手机是Symbian系统的手机。那就简单了,Symbian也支持同步名片夹到Gmail,你可以毫无顾忌的转移平台(强烈建议使用本方法,可以完整保留头像等信息,若使用91助手等软件同步名片可能会有来电无声等兼容性问题)。各位目前仍在使用Symbian的朋友,是时候出手了!具体方法参见如下:


    Google最近发布了Google Sync手机在线同步工具,该服务能够把支持SyncML手机的联系人信息与Google服务器进行同步,并在需要时重新传回手机中,支持SyncML协议的手机都可以使用该工具在线同步自己的通讯录,因此中国用户使用众多的诺基亚S60手机也可以使用GoogleSync进行同步,由于Google官方的介绍信息是英文的,没有中文介绍,我这里就以中文诺基亚S60第三版手机系统为例,详细介绍一下配置步骤。  确认手机属于诺基亚S60V3的手机,我是用6120c测试的!






找到手机自带的“同步处理” (多数在设置里的连接功能中)






1.点“选项”-“新同步情景模式”,增加一个新的同步配置,名称取为“Google sync”。






2.这时候点“应用程序”,设置一个同步应用,对于诺基亚S60手机,Google Sync只支持通讯录的同步。选择“名片夹”,“是否同步”选择“是”,“远程数据库”输入contacts,必须是小写字母,“同步类型”为“双向”。


3.接着修改“连接设置”,“服务器版本”为1.2,“服务器识别码”为Google,字母G必须是大写,数据承载方式为“互联网”,“接入点”自己选择“主机地址”输入https://m.google.com/syncml,注意这里的HTTPS,“端口”为443,用户名为你的Gmail用户名,密码为Gmail密码。


4. 设置好了以后,就可以进行在线同步了,同步的过程将会双向同步手机名片夹和Gmail通讯录里面的联系人。同步前请先做好备份操作。


    总结:及时的把自己手机上的上传到Gmail账户中,在格机之后恢复名片是个很不错的选择! 记住如果手机里删除了联系人那么Gmail的通讯录里也会删除,但是不要紧“所有联系人”会继续保存!格机之后要同步的话可以在Gmail把“所有联系人”中的名片移动到”通讯录“里! 然后再同步!


    或者说名片都在”通讯录'里但是格机之后同步GMAIL认为是删除了,然后把名片移动到了“所有联系人” ,然后你再移动回去!同步的规则很不爽!确切的说同步的是一种变化!


通过以上步骤肯定能实现将你的安卓手机的通讯录和Google进行同步
### GMAI-MMBench 数据集的详细介绍及用途 #### 数据集概述 GMAI-MMBench 是由上海人工智能实验室等多家科研机构共同提出的多模态评估基准,旨在推动通用医学人工智能的发展[^2]。它涵盖了广泛的医学领域任务数据类型,成为目前最为全面的通用医疗基准之一。 #### 数据集组成 GMAI-MMBench 包括以下核心组成部分: 1. **医学影像模态** 数据集中包含了 38 种不同的医学影像模态,这些影像是从多个公开资源中收集而来,能够支持多种医学影像分析任务,例如疾病检测、病变分类等。 2. **临床相关任务** 提供了 18 项与临床实践密切相关的任务,覆盖疾病的诊断、治疗方案推荐等多个方面。这使得研究人员可以更深入地探索如何将人工智能技术应用于实际医疗场景中。 3. **科室分布** 数据集涉及 18 个不同科室的数据,从而确保其广泛适用性跨学科特性。这种设计有助于开发适用于特定专科需求的人工智能解决方案[^2]。 4. **感知粒度** 使用视觉问题问答(VQA)格式定义了四种感知粒度级别,进一步细化了对图像理解的要求,提高了模型评价标准的精确程度。 #### 主要特点 - **全球化视角**:该数据集整合了来自世界各地共 284 个下游任务数据集的信息,体现了国际化的视野技术水平。 - **多样化应用**:不仅限于单一类型的医学数据分析,而是融合了影像、基因、文本等多种形式的内容,促进了综合性研究进展[^3]。 - **高质量标注**:所有数据均经过严格筛选专业人员审核,保证了标签的一致性准确性[^2]。 #### 应用方向 基于以上特征,GMAI-MMBench 可被广泛运用于以下几个方面: 1. 开发新型多模态学习框架,如 Med-Flamingo LLaVA-Med 等,通过微调或测试来验证模型性能[^3]。 2. 推动中医现代化进程中的技术创新工作——比如利用 HuaTuoGPT-Vision 对传统中医药材图片进行智能化处理[^3]。 3. 构建更加精准高效的辅助诊疗系统,在减少误诊率的同时提高医疗服务效率[^2]。 ```python import pandas as pd # 示例代码展示如何加载并初步查看数据集结构 def load_gmai_mmbench_data(path_to_dataset): data = pd.read_csv(path_to_dataset) return data.head() example_output = load_gmai_mmbench_data('path/to/gmaimmbench.csv') print(example_output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值