最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务。久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级。现在的问题是,xhd升掉最后一级还需n的经验值,xhd还留有m的忍耐度,每杀一个怪xhd会得到相应的经验,并减掉相应的忍耐度。当忍耐度降到0或者0以下时,xhd就不会玩这游戏。xhd还说了他最多只杀s只怪。请问他能升掉这最后一级吗?
10 10 1 10 1 1 10 10 1 9 1 1 9 10 2 10 1 1 2 2
0 -1 1
题意很容易懂,限定条件,有 m 耐力值,有s共能杀的总怪数,还有共有 k 种怪,
让你求当获得经验值大于等于n时还剩的最大耐力值;
题解:
dp,完全背包的变形,代码中有解释;
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m,k,s;
int dp[110][110],b[110],a[110]; //dp 数组里面存啥,是自己设定的,当不是一般的完全背包时
int main() // 当有多个限定条件时,把限定条件当做i,j轴,(可能还会有三维的dp)
{ // 至于那个限定条件当那个轴,是自己设定的,自己设定是为了
int i,j,tt; // 找到递推关系,从前一个最优解递推到这一个最优解;
//这里dp数组,dp[i][j] 当杀i个怪时,耐力值位j时,获得的最大经验值;
while(~scanf("%d%d%d%d",&n,&m,&tt,&s))
{
for(i=1;i<=tt;i++)
scanf("%d%d",&a[i],&b[i]);
memset(dp,0,sizeof(dp));
int ans=-1;
for(i=1;i<=s;i++)
{
for(j=1;j<=m;j++)
{
for(k=1;k<=tt;k++)
{
if(j>=b[k])
dp[i][j]=max(dp[i][j],dp[i-1][j-b[k]]+a[k]);
}
if(dp[i][j]>=n)
{
ans=max(ans,m-j);
}
}
}
printf("%d\n",ans);
}
return 0;
}