【推荐系统】GBDT+LR

01 GBDT

​ GBDT全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩。原因大概有几个,一是效果确实挺不错。二是即可以用于分类也可以用于回归。三是可以筛选特征。这三点实在是太吸引人了,导致在面试的时候大家也非常喜欢问这个算法。

​ GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差不断提高最终分类器的精度。

​ 弱分类器一般会选择为CART TREE(也就是分类回归树)。由于上述高偏差和简单的要求每个分类回归树的深度不会很深。最终的总分类器是将每轮训练得到的弱分类器加权求和得到的(也就是加法模型)。

02 LR

​ LR即逻辑回归(Logistic Regression),由于其存在易于实现、可解释性好以及扩展容易等优点,被广泛应用于点击率预估(CTR)、计算广告(CA)以及推荐系统(RS)等任务中。逻辑回归虽然称之为回归,但实际上确实一种分类的学习方法。

03 GBDT+LR

​ 2014年, Facebook提出了一种利用GBDT自动进行特征筛选和组合, 进而生成新的离散特征向量, 再把该特征向量当做 LR模型的输入, 来产生最后的预测结果, 这就是著名的GBDT+LR模型了。GBDT+LR 使用最广泛的场景是CTR点击率预 估,即预测当给用户推送的广告会不会被用户点击。
在这里插入图片描述

图3.1 模型结构

​ 训练时,GBDT 建树的过程相当于自动进行的特征组合和离散化,然后从根结点到叶子节点的这条路径就可以看成是不同 特征进行的特征组合,用叶子节点可以唯一的表示这条路径,并作为一个离散特征传入 LR 进行 。

​ 与测试,数据首先通过GBDT的每棵树,得到某个叶子节点对应的一个离散特征,然后把该特征以one-hot形式传入到LR中进行线性加权预测。

注意:

  • 通过GBDT进行特征组合之后得到的离散向量是和原训练数据的特征块。
  1. 建树的时候用ensemble建树的原因就是一棵树的表达能力很弱,不足以表达多个有区分性的特征组合,多棵树的表达 能力更强一些。GBDT每棵树都在学习前面棵树尚存的不足,迭代多少次就会生成多少棵树。
  2. RF也是多棵树,但从效果上有实践证明不如GBDT。且GBDT前面的树,特征分裂主要体现对多数样本有区分度的特 征;后面的树,主要体现的是经过前N颗树,残差仍然较大的少数样本。优先选用在整体上有区分度的特征,再选用 针对少数样本有区分度的特征,思路更加合理,这应该也是用GBDT的原因。
  3. 在CRT预估中, GBDT一般会建立两类树(非ID特征建一类, ID类特征建一类), AD,ID类特征在CTR预估中是非常 重要的特征,直接将AD,ID作为feature进行建树不可行,故考虑为每个AD,ID建GBDT树。
  4. 非ID类树:不以细粒度的ID建树,此类树作为base,即便曝光少的广告、广告主,仍可以通过此类树得到有区分 性的特征、特征组合
  5. ID类树:以细粒度的ID建一类树,用于发现曝光充分的ID对应有区分性的特征、特征组合。

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页