杜教筛:Bzoj3944: sum

题意

ni=1φ(i)ni=1μ(i)
n<=2311

不会做啊。。。
只会线性筛,显然不能线性筛
这个时候就需要杜教筛

怎么筛

先看一下狄利克雷卷积
假设我们要求 F(i)=ni=1f(n) n(1011) 比较大不能线性筛时考虑杜教筛
套路的推导:
先随意找一个函数 g(i) f(i) 求狄利克雷卷积:

(gf)(n)=d|ng(d)f(nd)

它的前缀和就是
i=1nd|ig(d)f(id)

现在要想办法向 F(n) 上靠:
=d=1nd|ig(d)f(id)=d=1ni=1ndg(d)f(i)

=d=1ng(d)i=1ndf(i)=d=1ng(d)F(nd)

所以
g(1)F(n)=(gf)(n)d=2ng(d)F(nd)

g(1)=1
如果能够快速的对 g gf求和,那么就能在 O(n34)F(n) 复杂度证明略 不会
如果 f 为积性函数,还可以线性筛出F的前若干项(为 n23 最优)降低复杂度

Sol

再看这道题

先看 φ :

ϕ(i)=ni=1φ(i)
按上面的来

g(1)ϕ(n)=i=1n(gφ)(i)i=2ng(d)ϕ(nd)

有个定理 d|nφ(d)=n
g(i)=1 所以
i=1n(gφ)(i)=i=1nd|iφ(id)=n(n+1)2

线性筛一部分,带进去递归处理即可

再看 μ :

U(n)=ni=1μ(i)
一样的套路得到

g(1)U(n)=i=1nd|ig(d)μ(id)i=2ng(d)U(nd)

注意到 d|nμ(d)=[n=1] ,直接令 g(i)=1
U(n)=1i=2ng(d)U(nd)

一样的递归处理即可

一定要记忆化(我用的map)

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(5e6 + 1);

IL ll Read(){
    RG ll x = 0, z = 1; RG char c = getchar();
    for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    return x * z;
}

int prime[_], num;
ll phi[_], mu[_];
map <int, ll> Phi, Mu;
bool isprime[_];

IL void Prepare(){
    isprime[1] = 1; phi[1] = mu[1] = 1;
    for(RG int i = 2; i < _; ++i){
        if(!isprime[i]){  prime[++num] = i; mu[i] = -1; phi[i] = i - 1;  }
        for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
            isprime[i * prime[j]] = 1;
            if(i % prime[j]){  mu[i * prime[j]] = -mu[i]; phi[i * prime[j]] = phi[i] * (prime[j] - 1);  }
            else{  mu[i * prime[j]] = 0; phi[i * prime[j]] = phi[i] * prime[j]; break;  }
        }
    }
    for(RG int i = 2; i < _; ++i) mu[i] += mu[i - 1], phi[i] += phi[i - 1];
}

IL ll Sumphi(RG ll n){
    if(n < _) return phi[n];
    if(Phi[n]) return Phi[n];
    RG ll ans = n * (n + 1) / 2;
    for(RG ll i = 2, j; i <= n; i = j + 1){
        j = n / (n / i);
        ans -= (j - i + 1) * Sumphi(n / i);
    }
    return Phi[n] = ans;
}

IL ll Summu(RG ll n){
    if(n < _) return mu[n];
    if(Mu[n]) return Mu[n];
    RG ll ans = 1;
    for(RG ll i = 2, j; i <= n; i = j + 1){
        j = n / (n / i);
        ans -= (j - i + 1) * Summu(n / i);
    }
    return Mu[n] = ans;
}

int main(RG int argc, RG char* argv[]){
    Prepare();
    for(RG int T = Read(); T; --T){
        RG ll n = Read();
        printf("%lld %lld\n", Sumphi(n), Summu(n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值