BZOJ2187:fraction

Sol

分情况讨论

  1. ⌊ a b ⌋ + 1 ≤ ⌈ c d ⌉ − 1 \lfloor\frac{a}{b}\rfloor+1\le \lceil\frac{c}{d}\rceil-1 ba+1dc1
    直接取 q = 1 , p = ⌊ a b ⌋ + 1 q=1,p=\lfloor\frac{a}{b}\rfloor+1 q=1,p=ba+1
  2. a = 0 a=0 a=0
    那么 q > p d c q> \frac{pd}{c} q>cpd
    直接取 p = 1 , q = ⌊ d c ⌋ + 1 p=1,q=\lfloor\frac{d}{c}\rfloor+1 p=1,q=cd+1
  3. a &lt; b a&lt;b a<b c ≤ d c\le d cd
    那么递归处理 d c &lt; q p &lt; b a \frac{d}{c} &lt; \frac{q}{p} &lt; \frac{b}{a} cd<pq<ab
  4. a ≥ b a\ge b ab
    那么递归处理 a   m o d   b b &lt; p q − ⌊ a b ⌋ &lt; c d − ⌊ a b ⌋ \frac{a~mod~b}{b} &lt; \frac{p}{q}-\lfloor\frac{a}{b}\rfloor &lt; \frac{c}{d}-\lfloor\frac{a}{b}\rfloor ba mod b<qpba<dcba

形式上类似于欧几里得算法,把 ( a , b ) (a,b) (a,b) 转化成 ( a   m o d   b , b ) (a~mod~b,b) (a mod b,b) 可能就是是类欧几里得算法的精髓

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

inline ll Gcd(ll x, ll y) {
	if (!x || !y) return x | y;
	return !y ? x : Gcd(y, x % y);
}

inline void Solve(ll a, ll b, ll c, ll d, ll &x, ll &y) {
	register ll g = Gcd(a, b), nx, ny;
	a /= g, b /= g, g = Gcd(c, d), c /= g, d /= g;
	nx = a / b + 1, ny = c / d + (c % d > 0) - 1;
	if (nx <= ny) x = nx, y = 1;
	else if (!a) x = 1, y = d / c + 1;
	else if (a < b && c <= d) Solve(d, c, b, a, y, x);
	else Solve(a % b, b, c - d * (a / b), d, x, y), x += y * (a / b);
}

ll a, b, c, d, x, y;

int main() {
	while (scanf("%lld%lld%lld%lld", &a, &b, &c, &d) != EOF) Solve(a, b, c, d, x, y), printf("%lld/%lld\n", x, y);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值