斐波拉契数列的性质

证明用到辗转相除相减法

定理一

  • g c d ( f [ i ] , f [ i + 1 ] ) = 1 gcd(f[i],f[i+1])=1 gcd(f[i],f[i+1])=1
    证明: g c d ( f [ i ] , f [ i + 1 ] ) = g c d ( f [ i + 1 ] − f [ i ] , f [ i ] ) = g c d ( f [ i − 1 ] , f [ i ] ) gcd(f[i], f[i+1]) = gcd(f[i+1]-f[i], f[i])=gcd(f[i-1], f[i]) gcd(f[i],f[i+1])=gcd(f[i+1]f[i],f[i])=gcd(f[i1],f[i])
    递归下去,所以 g c d ( f [ i ] , f [ i + 1 ] ) = g c d ( f [ 1 ] , f [ 2 ] ) = 1 gcd(f[i], f[i+1]) = gcd(f[1], f[2]) = 1 gcd(f[i],f[i+1])=gcd(f[1],f[2])=1

定理二

  • f [ m + n ] = f [ m − 1 ] f [ n ] + f [ m ] f [ n + 1 ] f[m+n]=f[m−1]f[n]+f[m]f[n+1] f[m+n]=f[m1]f[n]+f[m]f[n+1]
    证明: f [ m + n ] = f [ m + n − 1 ] + f [ m + n − 2 ] = f [ m + n − 2 ] + f [ m + n − 3 ] + f [ m + n − 3 ] + f [ m + n − 4 ] f[m+n] = f[m+n-1]+f[m+n-2]=f[m+n-2]+f[m+n-3]+f[m+n-3]+f[m+n-4] f[m+n]=f[m+n1]+f[m+n2]=f[m+n2]+f[m+n3]+f[m+n3]+f[m+n4]
    = f [ m + n − 2 ] + 2 ∗ f [ n + m − 3 ] + f [ n + m − 4 ] = 3 ∗ f [ n + m − 3 ] + 2 ∗ f [ n + m − 4 ] = . . . . . . =f[m+n-2]+2*f[n+m-3]+f[n+m-4]=3*f[n+m-3]+2*f[n+m-4]=...... =f[m+n2]+2f[n+m3]+f[n+m4]=3f[n+m3]+2f[n+m4]=......
    找找规律就得到了 f [ m + n ] = f [ m − 1 ] f [ n ] + f [ m ] f [ n + 1 ] f[m+n]=f[m−1]f[n]+f[m]f[n+1] f[m+n]=f[m1]f[n]+f[m]f[n+1]不会正规证明

定理三

  • g c d ( f [ n + m ] , f [ n ] ) = g c d ( f [ n ] , f [ m ] ) gcd(f[n+m],f[n])=gcd(f[n],f[m]) gcd(f[n+m],f[n])=gcd(f[n],f[m])
    证明: g c d ( f [ n + m ] , f [ n ] ) = g c d ( f [ m − 1 ] f [ n ] + f [ m ] f [ n + 1 ] , f [ n ] ) gcd(f[n+m], f[n])=gcd(f[m-1]f[n]+f[m]f[n+1], f[n]) gcd(f[n+m],f[n])=gcd(f[m1]f[n]+f[m]f[n+1],f[n])
    = g c d ( f [ m ] f [ n + 1 ] , f [ n ] ) = g c d ( f [ n + 1 ] , f [ n ] ) ∗ g c d ( f [ m ] , f [ n ] ) = g c d ( f [ m ] , f [ n ] ) =gcd(f[m]f[n+1], f[n])=gcd(f[n+1],f[n])*gcd(f[m], f[n])=gcd(f[m], f[n]) =gcd(f[m]f[n+1],f[n])=gcd(f[n+1],f[n])gcd(f[m],f[n])=gcd(f[m],f[n])

定理四

  • g c d ( f [ n ] , f [ n + m ] ) = f [ g c d ( n , n + m ) ] gcd(f[n],f[n+m])=f[gcd(n,n+m)] gcd(f[n],f[n+m])=f[gcd(n,n+m)]
    证明: g c d ( f [ n ] , f [ n + m ] ) = g c d ( f [ n ] , f [ m ] ) gcd(f[n], f[n+m])=gcd(f[n], f[m]) gcd(f[n],f[n+m])=gcd(f[n],f[m])
    即: g c d ( f [ n ] , f [ m + n ] % f [ n ] ) = g c d ( f [ n ] , f [ ( m + n ) % n ] ) gcd(f[n], f[m+n]\%f[n])=gcd(f[n], f[(m+n)\%n]) gcd(f[n],f[m+n]%f[n])=gcd(f[n],f[(m+n)%n])
    这是辗转相除法的形式
    最后肯定有 g c d ( f [ n ] , f [ n + m ] ) = f [ g c d ( n , n + m ) ] gcd(f[n],f[n+m])=f[gcd(n,n+m)] gcd(f[n],f[n+m])=f[gcd(n,n+m)]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值