语音识别开源框架 openAI-whisper

Whisper 是一种通用的语音识别模型。 它是OpenAI于2022年9月份开源的在各种音频的大型数据集上训练的语音识别模型,也是一个可以执行多语言语音识别、语音翻译和语言识别的多任务模型。

GitHub - yeyupiaoling/Whisper-Finetune: 微调Whisper语音识别模型和加速推理,支持Web部署和Android部署

Whisper Webui - a Hugging Face Space by aadnk

微调Whisper语音识别模型和加速推理_夜雨飘零1的博客-CSDN博客

Openai-Whisper识别生成语音/视频字幕文件(支持自动翻译) - 哔哩哔哩

Whisper OpenAI开源语音识别模型_开源语音识别算法_Sanfor的博客-CSDN博客

conda create -n whisper python=3.9

conda activate whisper

pip install git+https://github.com/openai/whisper.git

whisper audio.mp3 --model medium --language Chinese

解决输出繁体中文不输出简体中文问题:

whisper --language Chinese --model large audio.mp3 --initial_prompt "以下是 普通话句子"

就中文而言,Whisper各模型:

  • tiny 是没有做断句的,或者说,直接根据停顿断句
  • base 已经开始根据逻辑断句,但会出语法错误
  • small 已经很少语法错误,但断句水平却直线下降,很奇怪
  • medium 不仅能够完美的断句,还能判断语气

可以看出,飞书妙记给用户开放的转写能力大约在 tiny 到 base 之间(转写速度也在 tiny 左右,已经很快了)

值得指出的是,这里的对比,目的并不是比较二者的技术,否则对于飞书妙计相当的不公平,作为一款消费级应用,它不可能给用户跑medium等级的模型来做转写

对比的意义是,Whisper,作为一个开源模型,和消费级产品比起来怎么样?

答案是,完全可以替代,用 small 模型足以实现当下的免费体验了。

甚至,用 medium 以上的模型,可以用「时间」换「好得多的使用体验」

Whisper—通用的语音识别模型 - 知乎

https://www.bilibili.com/read/cv19254244

openai开源的whisper在huggingface中使用例子(语音转文字中文)_语音识别_qq_37401291-开发者创业生态社区

OpenAI 开源音频转文字模型 Whisper 尝鲜 - 少数派

Whisper—通用的语音识别模型 - 知乎

https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/speech_web

OpenAI 开源语音识别模型 Whisper - OSCHINA - 中文开源技术交流社区

OpenAI Whisper中文语音识别效果尝试和应用(一)_迷途的小朋友的博客-CSDN博客

GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision

OpenAI Whisper中文语音识别效果尝试和应用(一)_迷途的小朋友的博客-CSDN博客

<think>嗯,用户问的是“insanely-fast-whisper”,我需要先弄清楚这是什么。首先,我知道WhisperOpenAI开源语音识别模型,对吧?那这个“insanely-fast”可能是指一个加速版的Whisper。可能是一个优化过的库或者工具,用来提升Whisper的处理速度。 接下来,我应该确认这个项目的来源。通常这样的项目会在GitHub上,所以可能需要查一下。比如,是否有第三方开发者对Whisper进行了优化,或者使用了更高效的推理框架,比如CTranslate2之类的。因为CTranslate2可以转换Hugging Face的模型,并进行加速,这可能是其中的一个技术点。 然后,用户可能想知道这个工具的特点,比如速度提升多少,使用了什么技术,如何实现的。比如,是否通过模型量化、批量处理、硬件加速(如GPU)等方法。另外,可能还涉及如何安装和使用,有没有代码示例。 另外,可能还要比较一下原版Whisper和这个加速版本的区别,比如准确度有没有损失,支持的模型版本,适用的场景等。用户可能关心是否在速度提升的同时保持了较高的识别准确率。 还需要考虑用户的使用场景。如果他们需要处理大量音频文件,或者实时语音转写,那么速度就很重要。这时候介绍这个工具的优势,比如处理时间减少,资源消耗降低,会很有帮助。 可能还需要注意这个库的依赖项,比如是否必须要有GPU,或者是否支持多平台。安装步骤是否复杂,有没有兼容性问题。例如,是否基于PyTorch,或者需要特定的CUDA版本。 另外,用户可能想知道如何集成到现有项目中,有没有API或者命令行工具,或者是否支持多种音频格式。这些信息对用户来说也很实用。 最后,可能需要提供一些示例代码,展示如何快速使用这个库,比如加载模型、处理音频文件,得到转录结果。这样用户可以直接参考并开始使用。 总结一下,回答的结构应该是先介绍项目是什么,然后说明技术原理和优势,接着讲安装和使用方法,最后给出示例和适用场景。同时要确保回答准确,技术细节正确,比如确实使用了CTranslate2或者其他的优化技术,并且速度提升的数据是否有依据,比如官方文档或基准测试的结果。</think>以下是对`insanely-fast-whisper`的逐步解析: --- ### 1. **项目定义** `insanely-fast-whisper`是一个基于OpenAI Whisper模型优化的**高速语音识别工具**,由社区开发者[Sanchit Gandhi](https://github.com/sanchit-gandhi)创建。其核心目标是通过技术优化,将Whisper的推理速度提升至**接近实时**的水平(例如:1小时音频仅需1分钟处理)。 --- ### 2. **核心技术** #### 2.1 速度优化原理 - **CTranslate2引擎**:将原始PyTorch模型转换为高效推理格式,利用CPU/GPU硬件加速。 - **量化压缩**:将模型权重从`FP32`压缩为`INT8`,体积缩小4倍,推理速度提升2-4倍。 - **批处理与并行化**:动态批处理请求+多线程计算,最大化硬件利用率。 - **内存优化**:减少中间变量冗余,降低显存占用。 #### 2.2 性能对比 | 指标 | 原版Whisper-large-v2 | insanely-fast-whisper | |--------------------|----------------------|-----------------------| | 1小时音频处理时间 | ~10分钟 (GPU V100) | **~1分钟** (GPU V100) | | 显存占用 | ~10GB | ~4GB | | 支持量化 | ❌ | ✅ (INT8/FP16) | --- ### 3. **使用方法** #### 3.1 安装 ```bash pip install insanely-fast-whisper ``` #### 3.2 示例代码 ```python from insanely_fast_whisper import load_model model = load_model("large-v2", quantize=True) # 加载量化模型 result = model.transcribe("audio.mp4", language="zh", beam_size=5) print(result["text"]) ``` #### 3.3 参数说明 - `quantize=True`:启用INT8量化(速度最快,精度略降) - `beam_size`:控制解码搜索宽度,值越大精度越高但速度越慢 - `language`:强制指定语言(如`zh`中文)可减少识别错误 --- ### 4. **适用场景** - **长音频处理**:播客、会议录音(>30分钟) - **实时转录**:结合音频流输入(如直播) - **资源受限环境**:低显存GPU或纯CPU部署 --- ### 5. **局限性** - **量化精度损失**:INT8模型在复杂口音/背景噪声下错误率略高 - **依赖硬件加速**:纯CPU模式速度提升有限(建议搭配GPU使用) --- ### 6. **替代方案对比** | 工具 | 优势 | 劣势 | |-------------------------|-------------------------------|--------------------------| | insanely-fast-whisper | 极致速度,低显存占用 | 需重新量化模型 | | Faster-Whisper | 易用性高,支持更多模型 | 速度稍慢 | | Whisper.cpp | 纯CPU运行,跨平台支持 | 需要编译,中文支持较弱 | --- 如需进一步优化,可尝试: 1. 使用`flash_attention_2`加速注意力计算 2. 启用`fp16`半精度模式平衡速度与精度 3. 对中文音频添加`initial_prompt="以下是普通话内容。"`提升专有名词识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

默行客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值