边缘计算架构与机器学习的融合:现状、工具及挑战
在当今科技飞速发展的时代,机器学习和边缘计算作为两项极具创新性的技术,正深刻地改变着我们的生活和工作方式。机器学习让我们能够从海量数据中获取有价值的信息,构建智能系统;而边缘计算则为数据的传输和处理提供了可持续的架构。本文将深入探讨这两项技术的融合,包括相关研究案例、实用工具以及面临的挑战。
1. 边缘计算与机器学习的研究案例
1.1 工业物联网中的机器学习应用
有研究人员在工业物联网中运用机器学习技术,为了开发轻量级的机器学习解决方案,他们采用了迁移学习方法,并将服务准确性作为新的评估指标。最终成功构建了一种卸载架构,使得深度学习应用能够部署在边缘架构上。
1.2 医疗保健领域的边缘计算应用
在基于可穿戴传感器的系统中,边缘计算被用于医疗保健目的。研究人员使用循环神经网络进行预测,结果表明该方法优于传统方法。
1.3 物联网能源管理框架
有团队提出了一种集成边缘计算和深度强化学习的物联网能源管理框架。研究结果显示,随着家庭数量的增加,基于云的架构在延迟和能源消耗方面远远高于基于边缘的架构。这充分说明了在许多应用场景中,边缘计算架构相较于基于云的架构具有明显优势。
2. OpenVINO 工具包介绍
2.1 概述
OpenVINO 是英特尔公司推出的一款工具包,全称为开放视觉推理和神经网络优化工具包。它可用于开发各种高性能的人工智能相关任务解决方案,如计算机视觉、自然语言处理、推荐系统、视频处理和监控摄像头等,并且可以部署在边缘设备上,执行分类、回归、分割和检测等任务。该工具包支持多种操作系统,如 Windows、Mac OS、Ubuntu 和 Linux,还支持在不同硬件上进行异构执行,包括 CPU、GPU、Movidius 和 FPGA。
2.2 组件
OpenVINO 工具包包含以下主要组件:
- Intel(R) Distribution of OpenVINO toolkit
- Inference Engine
- Model Optimizer
- Open Model Zoo
- OpenCV
此外,它还拥有针对计算机视觉相关任务的特定优化库,以及用于加速和图像处理任务的各种库。
2.3 推理工作流程
OpenVINO 的推理工作流程主要包括以下四个阶段:
1.
加载预训练模型
:可以使用 TensorFlow、Caffe、Mxnet 等各种框架训练的预训练深度学习模型。OpenVINO 中的模型下载器可用于获取公共预训练模型。需要注意的是,OpenVINO 仅用于推理,不能用于训练深度学习模型。
2.
优化模型
:将加载的模型文件输入到模型优化器中,模型优化器会对模型进行优化,根据需要更改数据格式,并为推理做好准备。
3.
推理
:优化后的模型将传递给推理引擎 API,由其负责进行推理。
4.
部署
:推理完成后,模型可以部署在各种设备上,如 CPU、GPU、FPGA、Movidius 等,实现一次编码,随处部署。
以下是 OpenVINO 推理工作流程的 mermaid 流程图:
graph LR
A[加载预训练模型] --> B[优化模型]
B --> C[推理]
C --> D[部署]
3. 疟疾检测的边缘计算架构示例
3.1 环境设置和数据集准备
- 首先,挂载 Google 云端硬盘。
- 安装 OpenVINO、fastai 并进行必要的导入。
- 直接将数据集的压缩文件下载到笔记本中,并解压以提取图像数据集。
3.2 预训练模型
- 对数据进行预处理。
- 部署迁移学习的 ResNet50 模型进行训练。
- 将模型转换为所需的文件格式,并使用其进行推理。相关代码可在 GitHub 仓库中找到。
3.3 推理
最后,评估向 OpenVINO 提供预训练的 ResNet50 模型后进行的随机子样本推理结果。OpenVINO 工具包在效率、有效性、易于部署和开源等方面具有显著优势,能够缩小人工智能与边缘计算集成之间的差距。
4. 行业先驱开发的边缘计算架构
4.1 Google 的 Edge TPU
Google 作为互联网领域的先驱,推出了 Edge TPU。随着连接设备数量的增加,延迟和带宽成为新的挑战。Edge TPU 旨在在边缘运行人工智能,为用户提供端到端架构,具有较小的物理和功率占用,可应用于交通、零售和医疗保健等行业的机器学习和语音识别任务。
4.2 Amazon 的 AWS 边缘计算服务
Amazon 为了让小型企业也能使用边缘计算,推出了 AWS for the edge。AWS 可以将基础设施扩展到边缘,使端点更接近数据生成单元。如果需要以毫秒级的低延迟运行边缘应用,可以选择 AWS 本地区域或 AWS 波长。AWS 作为边缘计算资源提供商的一个显著特点是,它可以根据用户的需求提供特定的功能,如 AWS RoboMaker、Amazon Kinesis Video Stream、Amazon SageMaker Edge Manager、AWS IoT Greengrass 和 AWS Snowball Edge 等。同时,它还承诺为制造业、医疗保健、游戏等行业提供超低延迟计算、边缘机器学习和边缘数据处理服务。
以下是 Google Edge TPU 和 Amazon AWS 边缘计算服务的对比表格:
| 公司 | 产品 | 特点 | 应用场景 |
| ---- | ---- | ---- | ---- |
| Google | Edge TPU | 端到端架构,物理和功率占用小 | 交通、零售、医疗保健等 |
| Amazon | AWS for the edge | 可扩展基础设施,提供特定功能,低延迟 | 制造业、医疗保健、游戏等 |
5. 机器学习与边缘计算集成面临的挑战
5.1 不同的数据分布
机器学习算法的性能依赖于所提供的数据集,训练数据集和测试数据集的数据分布应保持一致。然而,在现实世界中,由于人为错误、噪声和边缘设备架构故障等原因,这种一致性很难实现。例如,研究发现参考图像与消费者在现实场景中拍摄的图像存在很大差异,后者往往存在阴影、模糊等噪声。为了克服这一挑战,可以使用数据增强技术,生成现实场景中图像的不同变体,以减少训练数据和测试数据之间的差异。
5.2 边缘节点的发现
在去中心化环境中,找到合适的边缘节点至关重要。由于设备数量庞大且用途各异,手动查找是不可行的。因此,需要建立强大的基准模型,让用户了解可用资源的可用性和能力,并主动处理节点故障。
5.3 边缘节点的安全使用
如果边缘节点需要向公众开放使用,就需要处理一系列限制:
- 确保拥有这些设备的公共和私人组织的硬件安全。
- 牢记设备的预期用途和安全性,例如用作边缘节点的路由器不能受到损害。
- 边缘节点所使用的技术需要具备一定的安全特性,以确保安全。
5.4 数据的异构性
单个边缘设备可能配备多个传感器,这些传感器收集的数据具有不同的尺度、单位和采样率。例如,监控摄像头通过麦克风收集音频信息,通过摄像头捕捉图像和视频;智能手机通过 GPS 传感器跟踪地理位置,通过光线传感器测量环境光线,通过触摸屏检测用户与设备的交互。由于收集的数据具有异构性,将这些数据集成起来并输入到机器学习算法中是非常重要的。一种解决方案是构建多模态机器学习模型,使其能够处理各种形式的数据。
5.5 边缘设备的能源消耗
降低能源消耗是使任何技术可持续发展的重要因素。对于使用电池供电的边缘设备,降低能耗可以延长电池寿命。一些具有图像和视频捕捉功能的边缘设备消耗大量电力,同时还需要捕捉高质量的内容以满足用户需求。为了解决这个问题,可以采取以下措施:
- 仅在需要时激活传感器。
- 在需要连续数据流的情况下,进行子采样并仅处理有价值的数据,丢弃其余数据。
- 重新设计硬件,例如去除模数转换器,直接使用模拟信号,以减少能源消耗。
6. 结论
随着技术的不断进步和向工业 4.0 的迈进,构建人工智能和边缘计算协同工作的架构至关重要。在许多应用场景中,从基于云的架构向基于边缘的架构转变具有显著优势,因为边缘计算在网络、计算能力、能源消耗和服务质量等方面表现出色。随着边缘计算领域的研究不断深入,智能边缘设备将变得更加普遍,并在推动可持续、快速、智能和高效的新技术发展中发挥重要作用。本文对机器学习和边缘计算的集成进行了全面的探讨,希望能够为未来的研究和应用提供有价值的参考。
7. 技术细节与操作要点总结
7.1 OpenVINO 工具包操作要点
OpenVINO 工具包在边缘计算与机器学习融合中发挥着重要作用,其操作流程可总结如下:
1.
下载与安装
:从英特尔公司官方网站下载适用于不同操作系统(如 Windows、Mac OS、Ubuntu、Linux)的安装包,运行安装文件,完成 Intel(R) Distribution of OpenVINO toolkit、Inference Engine、Model Optimizer、Open Model Zoo、OpenCV 等组件的安装。
2.
加载预训练模型
:可以使用 TensorFlow、Caffe、Mxnet 等框架训练的模型,也可通过 OpenVINO 的模型下载器获取公共预训练模型。
3.
模型优化
:将加载的模型文件输入到 Model Optimizer 中,它会对模型进行优化,调整数据格式,为推理做准备。
4.
推理与部署
:优化后的模型传递给 Inference Engine API 进行推理,推理完成后可部署到 CPU、GPU、FPGA、Movidius 等设备上。
以下是 OpenVINO 工具包操作流程的 mermaid 流程图:
graph LR
A[下载安装] --> B[加载预训练模型]
B --> C[模型优化]
C --> D[推理]
D --> E[部署]
7.2 疟疾检测示例操作步骤
以疟疾检测为例,使用 OpenVINO 进行边缘计算的具体步骤如下:
1.
环境与数据准备
- 挂载 Google 云端硬盘。
- 安装 OpenVINO、fastai 并进行必要的导入。
- 下载数据集压缩文件到笔记本并解压。
2.
模型训练与转换
- 对数据进行预处理。
- 部署迁移学习的 ResNet50 模型进行训练。
- 将训练好的模型转换为所需文件格式。
3.
推理与评估
- 使用转换后的模型进行推理。
- 评估随机子样本推理结果。
7.3 不同边缘计算架构特点对比
为了更清晰地了解不同公司推出的边缘计算架构特点,以下是进一步的对比表格:
| 公司 | 产品 | 架构特点 | 优势 | 适用场景 |
| ---- | ---- | ---- | ---- | ---- |
| Google | Edge TPU | 端到端架构,物理和功率占用小 | 低功耗、易于集成 | 交通、零售、医疗保健等对功耗和空间有要求的场景 |
| Amazon | AWS for the edge | 可扩展基础设施,提供特定功能,低延迟 | 功能丰富、可定制 | 制造业、医疗保健、游戏等对计算能力和低延迟有要求的场景 |
8. 应对挑战的策略与展望
8.1 应对挑战的策略
针对机器学习与边缘计算集成面临的挑战,可以采取以下策略:
1.
数据分布问题
:使用数据增强技术,如旋转、翻转、缩放等操作,增加训练数据的多样性,减少训练数据和测试数据之间的差异。
2.
边缘节点发现
:建立基于性能指标、资源利用率等多维度的基准模型,通过自动化算法实现边缘节点的智能发现和管理。
3.
边缘节点安全
:采用加密技术、访问控制、安全审计等手段,确保边缘节点的硬件和数据安全。
4.
数据异构性
:构建多模态机器学习模型,如多模态 Restricted Boltzmann Machine,对不同类型的数据进行融合处理。
5.
能源消耗
:优化硬件设计,采用低功耗芯片和传感器;在软件层面,采用智能调度算法,仅在需要时激活设备和处理数据。
8.2 未来展望
随着技术的不断发展,机器学习与边缘计算的融合将迎来更广阔的发展前景:
1.
智能边缘设备普及
:智能边缘设备将在各个领域得到广泛应用,如智能家居、智能交通、工业自动化等,为人们的生活和工作带来更多便利。
2.
算法优化与创新
:研究人员将不断优化机器学习算法,使其更适合在边缘设备上运行,同时探索新的算法和模型,提高边缘计算的性能和效率。
3.
安全与隐私保障
:随着数据安全和隐私问题日益受到关注,未来将加强在边缘计算环境下的数据安全和隐私保护技术的研究和应用。
4.
跨领域融合
:机器学习与边缘计算将与物联网、大数据、云计算等技术深度融合,创造出更多的应用场景和商业价值。
总之,机器学习与边缘计算的融合是未来科技发展的重要趋势,虽然面临着一些挑战,但通过不断的技术创新和优化,必将为我们带来更加智能、高效、可持续的未来。