three.js 源码注释(九十一)extras/core/Curve.js

这篇博客详细注释了THREE.JS库中extras/core/Curve.js文件的内容,主要涉及数据可视化、WebGL和THREE.JS相关知识。作者强调文章遵循署名-非商业用途-保持一致的创作协议,并提供了源码的GitHub链接以供进一步学习。
摘要由CSDN通过智能技术生成

商域无疆 (http://blog.csdn.net/omni360/)

本文遵循“署名-非商业用途-保持一致”创作公用协议

转载请保留此句:商域无疆 -  本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS否则,出自本博客的文章拒绝转载或再转载,谢谢合作。


俺也是刚开始学,好多地儿肯定不对还请见谅.

以下代码是THREE.JS 源码文件中extras/core/Curve.js文件的注释.

更多更新在 : https://github.com/omni360/three.js.sourcecode


/**
 * @author zz85 / http://www.lab4games.net/zz85/blog
 * Extensible curve object
 *
 * Some common of Curve methods 一些通用的方法.
 * .getPoint(t), getTangent(t)
 * .getPointAt(u), getTagentAt(u)
 * .getPoints(), .getSpacedPoints()
 * .getLength()
 * .updateArcLengths()
 *
 * This following classes subclasses THREE.Curve:
 * 这些是THREE.Curve的一些子类.
 *
 * -- 2d classes --
 * THREE.LineCurve
 * THREE.QuadraticBezierCurve
 * THREE.CubicBezierCurve
 * THREE.SplineCurve
 * THREE.ArcCurve
 * THREE.EllipseCurve
 *
 * -- 3d classes --
 * THREE.LineCurve3
 * THREE.QuadraticBezierCurve3
 * THREE.CubicBezierCurve3
 * THREE.SplineCurve3
 * THREE.ClosedSplineCurve3
 *
 * A series of curves can be represented as a THREE.CurvePath
 * 一个曲线序列可以用THREE.CurvePath
 *
 **/

/**************************************************************
 *	Abstract Curve base class 曲线抽象基类
 **************************************************************/
/*
///Curve对象曲线抽象基类,一个可扩展的曲线对象包含插值方法.
///
///	定义:样条曲线是经过一系列给定点的光滑曲线。最初,样条曲线都是借助于物理样条得到的,放样员把富有弹性的细木条(或有机玻璃条),
///		 用压铁固定在曲线应该通过的给定型值点处,样条做自然弯曲所绘制出来的曲线就是样条曲线。样条曲线不仅通过各有序型值点,
///		 并且在各型值点处的一阶和二阶导数连续,也即该曲线具有连续的、曲率变化均匀的特点。
///	NOTE:参考百度百科http://baike.baidu.com/view/1896463.htm?fr=aladdin
/// NOTE:关于三次样条插值,参考百度百科http://baike.baidu.com/view/2326225.htm?fr=aladdin
/// NOTE:关于更多样条曲线插值,参考维基百科http://zh.wikipedia.org/wiki/%E8%B2%9D%E8%8C%B2%E6%9B%B2%E7%B7%9A
/// NOTE:关于样条曲线,参考维基百科http://zh.wikipedia.org/wiki/%E6%A0%B7%E6%9D%A1%E5%87%BD%E6%95%B0
*/
///<summary>Curve</summary>
THREE.Curve = function () {

};

/****************************************
****下面是Curve对象提供的功能函数.
****************************************/

/*
///getPoint方法返回在curve对象上t点(取值范围0.0-1.0之间)的矢量.
*/
///<summary>getPoint</summary>
///<param name ="t" type="float">t的取值范围是0.0 - 1.0,将曲线作为一个整体,一个
#include <iostream> #include <cmath> #include <fstream> using namespace std; class scyt { float *x,*y,*d,*h,*u,*q,*a,*b,*c,*l,*r,*o,*M; int m; float y0,y3; public: scyt(); void qiudao(); void zgf(); void qiujie(); ~scyt(); }; void main() { scyt hello; hello.qiudao(); hello.zgf(); hello.qiujie(); } scyt::scyt() { ifstream fin("三次样条插值.txt"); for(float j;fin>>j;) { m=int(j); break; } x=new float[m]; y=new float[m]; d=new float[m]; h=new float[m-1]; u=new float[m-2]; q=new float[m-2]; a=new float[m-1]; b=new float[m]; c=new float[m-1]; l=new float[m]; r=new float[m-1];//此处的r为追赶法中的u; o=new float[m];//此处o为追赶法中的y M=new float[m];//此处M为追赶法中的x; int jishu=0; for(j;fin>>j;) { if(jishu<=m-1) x[jishu]=j; if(jishu>m-1&&jishu;<2*m) { y[jishu-m]=j; } if(jishu==2*m) { y0=j; } if(jishu==2*m+1) { y3=j; } jishu++; } fin.close(); } void scyt::qiudao() { for(int i=0;i<m-1;i++) { h[i]=x[i+1]-x[i]; } for(i=0;i<m-2;i++) { u[i]=h[i] / (h[i] + h[i+1]); } for(i=0;i<m-2;i++) { q[i]=1-u[i]; } d[0]=6/h[0]*((y[1]-y[0])/h[0]-y0); for(i=1;i<m-1;i++) { d[i]=6/(h[i-1]+h[i])*((y[i+1]-y[i])/h[i]-((y[i]-y[i-1])/h[i-1])); } d[m-1]=6/h[m-2]*(y3-(y[m-1]-y[m-2])/h[m-2]); } void scyt::zgf() { u[m-2]=1; for(int i=0;i<m;i++) { b[i]=2; } c[0]=1; for(i=1;i<m-1;i++) { c[i]=q[i-1]; } //........................................ l[0]=b[0]; for(i=0;i<m-1;i++) { r[i]=c[i] / l[i]; l[i+1]=b[i+1] - (u[i] * r[i]); } o[0]=d[0] / l[0]; for(i=1;i<m;i++) { o[i]=(d[i]-u[i-1]*o[i-1]) / l[i]; } M[m-1]=o[m-1]; for(i=m-2;i>=0;i--) { M[i]=o[i]-r[i] * M[i+1]; } cout<<m<<"个点的导数值分别是:"<<endl; for(i=0;i<m;i++) { cout<<"M"<<i+1<<"="; cout<<M[i]<<endl; } //M的值求出。。。。。。追赶法调用完毕 } void scyt::qiujie() { float S; for(;;) { float f; cout<<"请输入待求x的值(输入1000)时退出:"; cin>>f; if(f==1000) break; for(int i=0;i<m;i++) { if(f>x[i]&&f<x[i+1]) { S=pow((x[i+1]-f),3)*M[i]/(6*h[i]) + pow(f-x[i],3)*M[i+1]/(6*h[i]) + (x[i+1]-f)*(y[i]-h[i]*h[i]*M[i]/6)/h[i] + (f-x[i])*(y[i+1]-h[i]*h[i]*M[i+1]/6)/h[i]; cout<<"S["<<f<<"]="<<S<<endl; } } } } scyt::~scyt() { delete []x,y,d,h,u,q,a,b,c,l,r,o,M; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值