仍然膜拜中。。。原文 仍是看了大神的blog才明白,看明白了以后就各种膜拜了。。。。
dp求期望的题。
题意:有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。
设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。
叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);
非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);
设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);
对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei;
从叶子结点开始,直到算出 A1,B1,C1;
E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<algorithm>
using namespace std;
int cas,n,pos,m[20000],list[20000];
double ki[20000],ei[20000],ai[20000],bi[20000],ci[20000];
struct P{
int u,v,next;
}point[20000];
void add(int fa,int son){
point[pos].u=fa;
point[pos].v=son;
point[pos].next=list[fa];
list[fa]=pos++;
}
bool dfs(int son,int fa){
int now=list[son];
if(m[son]==1&&fa!=-1){
ai[son]=ki[son];
ci[son]=bi[son]=1-ki[son]-ei[son];
return true;
}
ai[son]=ki[son];
bi[son]=(1-ki[son]-ei[son])/m[son];
ci[son]=1-ki[son]-ei[son];
now=list[son];
double tmp=0;
while(now!=-1){
if(point[now].v==fa){
now=point[now].next;
continue;
}
if(dfs(point[now].v,son)==false){
return false;
}
ai[son]+=ai[point[now].v]*bi[son];
ci[son]+=ci[point[now].v]*bi[son];
tmp+=bi[son]*bi[point[now].v];
now=point[now].next;
}
if(fabs(tmp-1)<1e-10)return false;
ai[son]/=1-tmp;
bi[son]/=1-tmp;
ci[son]/=1-tmp;
return true;
}
int main(){
scanf("%d",&cas);
int it=1;
while(cas--){
memset(m,0,sizeof(m));
pos=0;
memset(list,-1,sizeof(list));
scanf("%d",&n);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
m[x]++;m[y]++;
}
for(int i=1;i<=n;i++){
scanf("%lf%lf",&ki[i],&ei[i]);
ki[i]/=100.0;
ei[i]/=100.0;
}
printf("Case %d: ",it++);
if(dfs(1,-1)&&fabs(1-ai[1])>1e-10){
// printf("! %.10lf\n",ai[1]);
printf("%.6lf\n",ci[1]/(1-ai[1]));
}
else{
printf("impossible\n");
}
}
return 0;
}