BZOJ 2463 数论(欧拉函数) 解题报告

2190: [SDOI2008]仪仗队

Description

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。  
这里写图片描述    
现在,C君希望你告诉他队伍整齐时能看到的学生人数。

Input

共一个数N。

Output

共一个数,即C君应看到的学生人数。

Sample Input

4

Sample Output

9

HINT

对于 100% 的数据,1 ≤ N ≤ 40000

【解题报告】

由题意可知可以由对角线分成两半,且人数相等。
满足能被看见的条件是:横坐标与纵坐标互质。反证:设gcd(i,j)=d,那么坐标为(i,j)的人一定可以被坐标为(id,jd)的人挡住。
最左下角的三个能看见的点应该单独计算。
即计算N*N矩阵的公式为
(∑i=2N−1ϕ(i))∗2+3
我们可以用欧拉筛线性筛出ϕ的值,时间是O(N)的。
(于是我愉快地掏出了数学一本通)

代码如下:

#include<cstdio>  
#include<cstring>  
#include<algorithm>  
using namespace std;  
#define N 40005

int n,ans=0;
int phi[N],prime[N],tot;
bool mark[N];

void getphi()
{
    phi[1]=1;
    for(int i=2;i<=n;++i)
    {
        if(!mark[i])
        {
            prime[++tot]=i;
            phi[i]=i-1;
        }
        for(int j=1;j<=tot;++j)
        {
            if(i*prime[j]>n) break;
            mark[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*(prime[j]);
                break;
            }
            else
            phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}

int main()
{
    scanf("%d",&n);
    getphi();
    for(int i=2;i<=n-1;++i)
    {
        ans+=phi[i];
    }
    printf("%d\n",ans*2+3);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值