BZOJ4176 Lucas的数论

题目大意

去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

在整理以前的试题时,发现了这样一道题目“求 ∑ i = 1 n f ( i ) \sum\limits_{i=1}^nf(i) i=1nf(i)”,其中 f ( i ) f(i) f(i)表示 i i i的约数个数。他现在长大了,题目也变难了。

给定 n n n,求如下表达式的值:

∑ i = 1 n ∑ j = 1 n f ( i j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^nf(ij) i=1nj=1nf(ij)

输出答案模 1 0 9 + 7 10^9+7 109+7后的值。

1 ≤ n ≤ 1 0 9 1\leq n\leq 10^9 1n109


题解

前置知识:

有一道类似的题,可以看一下:【SDOI2015】约数个数和

式子的证明

首先,我们要知道:

d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( x , y ) = 1 ] d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1] d(ij)=xiyj[gcd(x,y)=1]

证明:

如果 i j ij ij的因子 k k k中有因子 p c p^c pc i i i中有因子 p a p^a pa j j j中有因子 p b p^b pb,其中 p p p为质数。那么我们规定

  • c ≤ a c\leq a ca时,这个因子 p p p都在 a a a中选择
  • c > a c>a c>a时,在 i i i中选 p a p^a pa,在 j j j中选 p c − a p^{c-a} pca

对于 i j ij ij的因子 k k k的每个因子都这样处理。

如果令 x , y x,y x,y互质,则

  • x , y x,y x,y中都没有因子 p p p,则
  • x x x中有因子 p p p且次数为 k k k,则相当于在 x x x中选了 p k p^k pk
  • y y y中有因子 p p p且次数为 k k k,则相当于在 x x x中选了 p a p^a pa,在 j j j中选了 p k p^k pk

i j ij ij的各个因子 k k k对应各个互质的 x , y x,y x,y,所以等式成立。


推式子

根据上面的式子,有

∑ i = 1 n ∑ j = 1 n d ( i j ) = ∑ i = 1 n ∑ j = 1 n ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( x , y ) = 1 ] \sum\limits_{i=1}^n\sum\limits_{j=1}^nd(ij)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1] i=1nj=1nd(ij)=i=1nj=1nxiyj[gcd(x,y)=1]

由莫比乌斯函数的性质,原式可变为

∑ i = 1 n ∑ j = 1 n ∑ x ∣ i ∑ y ∣ j ∑ k ∣ i , k ∣ j μ ( k ) \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{k|i,k|j}\mu(k) i=1nj=1nxiyjki,kjμ(k)


先枚举 k k k,则转换为

∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n k ⌋ ∑ i = 1 ⌊ n k ⌋ ⌊ n k i ⌋ ⌊ n k j ⌋ \sum\limits_{k=1}^{n}\mu(k)\sum\limits_{i=1}^{\lfloor\frac nk\rfloor}\sum\limits_{i=1}^{\lfloor\frac nk\rfloor}\lfloor\dfrac{n}{ki}\rfloor\lfloor\dfrac{n}{kj}\rfloor k=1nμ(k)i=1kni=1knkinkjn

也就是

∑ k = 1 n μ ( k ) × ( ∑ i = 1 ⌊ n k ⌋ ⌊ n k i ⌋ ) 2 \sum\limits_{k=1}^{n}\mu(k)\times (\sum\limits_{i=1}^{\lfloor\frac nk\rfloor}\lfloor\dfrac{n}{ki}\rfloor)^2 k=1nμ(k)×(i=1knkin)2

g ( n ) = ∑ i = 1 n ⌊ n i ⌋ g(n)=\sum\limits_{i=1}^n\lfloor\dfrac ni\rfloor g(n)=i=1nin,则 g ( n ) = ∑ i = 1 n f ( i ) g(n)=\sum\limits_{i=1}^nf(i) g(n)=i=1nf(i)

为什么呢?因为对于每一个 i i i,加上 ⌊ n i ⌋ \lfloor\dfrac ni\rfloor in就相当于对 i , 2 i , 3 i , … i,2i,3i,\dots i,2i,3i,都算一次贡献,也就是让所有有约数为 i i i的数计算一次约数为 i i i的贡献。而 1 1 1 n n n的每个数都有被计算贡献,所以 g ( n ) = ∑ i = 1 n f ( i ) g(n)=\sum\limits_{i=1}^nf(i) g(n)=i=1nf(i)

杜教筛 μ ( i ) \mu(i) μ(i) f ( i ) f(i) f(i)的值( f ( i ) f(i) f(i)是约数个数,是积性函数,所以可以用杜教筛来求)。

时间复杂度为 O ( n 2 3 ) O(n^{\frac 23}) O(n32)

code

#include<bits/stdc++.h>
using namespace std;
const int N=2000000;
const long long mod=1000000007;
int z[N+5],p[N+5],mu[N+5],y[N+5];
long long ans=0,smu[N+5],sy[N+5];
map<long long,long long>mmu,my;
void init(){
	mu[1]=1;
	for(int i=2;i<=N;i++){
		if(!z[i]){
			p[++p[0]]=i;mu[i]=-1;
		}
		for(int j=1;j<=p[0]&&i*p[j]<=N;j++){
			z[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
			mu[i*p[j]]=-mu[i];
		}
	}
	for(int i=1;i<=N;i++){
		smu[i]=smu[i-1]+mu[i];
		for(int j=i;j<=N;j+=i) ++y[j];
		sy[i]=(sy[i-1]+y[i])%mod;
	}
}
long long gtmu(int t){
	if(t<=N) return smu[t];
	if(mmu.count(t)) return mmu[t];
	long long re=0;
	for(int l=2,r;l<=t;l=r+1){
		r=t/(t/l);
		re=(re+(r-l+1)*gtmu(t/l)%mod)%mod;
	}
	return mmu[t]=(1-re+mod)%mod;
}
long long gty(int t){
	if(t<=N) return sy[t];
	if(my.count(t)) return my[t];
	long long re=0;
	for(int l=2,r;l<=t;l=r+1){
		r=t/(t/l);
		re=(re+(gtmu(r)-gtmu(l-1)+mod)%mod*gty(t/l)%mod)%mod;
	}
	return my[t]=(t-re+mod)%mod;
}
int main()
{
	int n;
	init();
	scanf("%d",&n);
	for(int l=1,r;l<=n;l=r+1){
		r=n/(n/l);
		long long t=gty(n/l);
		ans=(ans+(gtmu(r)-gtmu(l-1)+mod)%mod*t%mod*t%mod)%mod;
	}
	printf("%lld",ans);
	return 0;
}
  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值