Monkey King
Problem Description
Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can’t avoid quarrelling, and it only happens between two monkeys who does not know each other. And when it happens, both the two monkeys will invite the strongest friend of them, and duel. Of course, after the duel, the two monkeys and all of there friends knows each other, and the quarrel above will no longer happens between these monkeys even if they have ever conflicted.
Assume that every money has a strongness value, which will be reduced to only half of the original after a duel(that is, 10 will be reduced to 5 and 5 will be reduced to 2).
And we also assume that every monkey knows himself. That is, when he is the strongest one in all of his friends, he himself will go to duel.
Input
There are several test cases, and each case consists of two parts.
First part: The first line contains an integer N(N<=100,000), which indicates the number of monkeys. And then N lines follows. There is one number on each line, indicating the strongness value of ith monkey(<=32768).
Second part: The first line contains an integer M(M<=100,000), which indicates there are M conflicts happened. And then M lines follows, each line of which contains two integers x and y, indicating that there is a conflict between the Xth monkey and Yth.
Output
For each of the conflict, output -1 if the two monkeys know each other, otherwise output the strongness value of the strongest monkey in all friends of them after the duel.
Sample Input
5
20
16
10
10
4
5
2 3
3 4
3 5
4 5
1 5
Sample Outpu
8
5
5
-1
10
【解题报告】
题目大意:有n个猴子,一开始每个猴子只认识自己。每个猴子有一个力量值,力量值越大表示这个猴子打架越厉害。如果2个猴子不认识,他们就会找他们认识的猴子中力量最大的出来单挑,单挑不论输赢,单挑的2个猴子力量值减半,这2拨猴子就都认识了,不打不相识嘛。现在给m组询问,如果2只猴子相互认识,输出-1,否则他们各自找自己认识的最牛叉的猴子单挑,求挑完后这拨猴子力量最大值。
首先很明显这题涉及到集合并的操作,要用到并查集。其次要找到某一拨猴子中力量最大值,找最大值最快的应该是堆。2拨猴子要快速合并而又不失堆的特性,想来想去左偏树比较合适。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100005
int n,m,x,y;
int set[N];
struct Node
{
int ls,rs,dis,key;
}tree[N];
int find(int x)
{
int root=x;
while(root!=set[root]) root=set[root];
int fa=set[x];
while(fa!=root)
{
set[x]=root;
x=fa;
fa=set[x];
}
return root;
}
int merge(int x,int y)
{
if(!x) return y;
if(!y) return x;
if(tree[x].key<tree[y].key) swap(x,y);
tree[x].rs=merge(tree[x].rs,y);
set[tree[x].rs]=x;
if(tree[tree[x].ls].dis<tree[tree[x].rs].dis)
swap(tree[x].ls,tree[x].rs);
if(tree[x].rs) tree[x].dis=tree[tree[x].rs].dis+1;
else tree[x].dis=0;
return x;
}
int pop(int x)
{
int l=tree[x].ls;
int r=tree[x].rs;
set[l]=l;
set[r]=r;
tree[x].ls=tree[x].rs=tree[x].dis=0;
return merge(l,r);
}
int main()
{
while(~scanf("%d",&n))
{
memset(tree,0,sizeof(tree));
for(int i=1;i<=n;++i)
{
scanf("%d",&tree[i].key);
set[i]=i;
}
for(scanf("%d",&m);m;--m)
{
scanf("%d%d",&x,&y);
int fx=find(x),fy=find(y);
if(fx==fy) {printf("-1\n");continue;}
int X=pop(fx);
tree[fx].key/=2;
fx=merge(X,fx);
int Y=pop(fy);
tree[fy].key/=2;
fy=merge(Y,fy);
printf("%d\n",tree[merge(fx,fy)].key);
}
}
return 0;
}