洛谷P1983 拓扑排序 解题报告

题目描述

一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)
现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入格式:

第一行包含 2 个正整数 n, m,用一个空格隔开。
第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si ≤ n),表示第 i 趟车次有 si 个停靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式:

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

【解题报告】
在火车从起点到终点的所有站点中,停靠的站点的车站级别一定比不停靠的高,设起点为s,终点为t,如果只有一趟火车,那么所有停靠的站的等级只需要比不停靠的站的最高值多1即可.如果再增加一趟火车,这趟火车在上一趟火车的起始点之内,那么还要再+1,如果在起始点之外那么就和一趟火车一样处理,如果有n趟呢……可以想到如果拓扑排序.在起始点内不能停靠的站向可以停靠的站连有向边,然后找到入度为0的点(没有边指向的点),删除这个点和这个点所连出去的所有路径,路径指向的点的入度-1,当所有入度为0的点(撤销原入度为0后入度变为0在第一轮不解决)都解决了之后,进行下一轮,进行一轮就累加一下计数器,最后输出结果即可.这是拓扑排序的基本方法,很好理解,实在不能理解画个图就能理解了.还有一个问题,为什么要多个点在同一轮进行处理呢?可以想到如果按照之前提到的方式建图,那么就会有多个拓扑序列,我们可以认为每一次对所有的拓扑序列的操作是等价的,直到没有入度为0的点即可.

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1010 

int n,m,flag[N],first,ans,vis[N];
int s,a[N],e[N][N],rudu[N],st[N],top;

void ToPo()
{
    first=1;
    while(top!=0||first)
    {
        first=0;top=0;
        for(int i=1;i<=n;i++)
        if(!rudu[i]&&!vis[i])
            st[++top]=i,vis[i]=1;
        for(int i=1;i<=top;i++)
        for(int j=1;j<=n;j++)
        if(e[st[i]][j])
            e[st[i]][j]=0,rudu[j]--;
        ans++;
    }
    ans--;
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        memset(flag,0,sizeof(flag));
        scanf("%d",&s);
        for(int j=1;j<=s;j++)
        {
            scanf("%d",&a[j]);
            flag[a[j]]=1;
        }
        for(int j=a[1];j<=a[s];j++)
        {
            if(!flag[j])
            for(int k=1;k<=s;k++)
            {
                if(!e[j][a[k]])
                {
                    e[j][a[k]]=1;
                    rudu[a[k]]++;
                }
            }
        }
    }
    ToPo();
    printf("%d\n",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路1(洛谷题解) 设n维球体为α,其半径为r(注意,这是一个设而不求。),其球心X的坐标为(x_1,x_2,…,x_n )。∀A_1,A_2,…,A_(n+1)∈α,点A_i (1≤i≤n+1)坐标为(a_((i,1) ),a_((i,2) ),…,a_((i,n) ) )。由n维球体的定义,得方程组: {█((a_((1,1) )-x_1 )^2+(a_((1,2) )-x_2 )^2+⋯+(a_((1,n) )-x_n )^2=r^2@(a_((2,1) )-x_1 )^2+(a_((2,2) )-x_2 )^2+⋯+(a_((2,n) )-x_n )^2=r^2@⋮@(a_((n+1,1) )-x_1 )^2+(a_((n+1,2) )-x_2 )^2+⋯+(a_((n+1,n) )-x_n )^2=r^2 )┤. 从上往下,将第1个方程与第2个方程相减,将第2个方程与第3个方程相减,……,将第n个方程与第(n+1)个方程相减,得: {█(∑_(i=1)^n▒2(a_((1,i) )-a_((2,i) ) ) x_i=∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @∑_(i=1)^n▒2(a_((2,i) )-a_((3,i) ) ) x_i=∑_(i=1)^n▒(a_((2,i) )+a_((3,i) ) )(a_((2,i) )-a_((3,i) ) ) @⋮@∑_(i=1)^n▒2(a_((n,i) )-a_((n+1,i) ) ) x_i=∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n,i) ) ) )┤. 这是一个线性方程组,其增广矩阵为[■(2(a_((1,1) )-a_((2,1) ) )&⋯&2(a_((1,n) )-a_((2,n) ) )&∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @⋮&⋱&⋮&⋮@2(a_((n,1) )-a_((n+1,1) ) )&⋯&2(a_((n,n) )-a_((n+1,n) ) )&∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n+1,i) ) ) )],可用列主元高斯消元法求得其解。 思路2 n(n∈N_+ )维空间中到两个互不重合的点的距离相等的点的集合叫做这两个点的垂直平分图形。 求n维空间中两点的垂直平分图形的方程的基本思路: 设点A坐标为(a_1,a_2,…,a_n ),点B的坐标为(b_1,b_2,…,b_n ),A≠B,它们的垂直平分图形为β。取∀X∈β,其坐标为(x_1,x_2,…,x_n )。 由垂直平分图形的意义,得: |AX|=|BX|⇔|AX|^2=|BX|^2⇔∑_(i=1)^n▒(a_i-x_i )^2 =∑_(i=1)^n▒(b_i-x_i )^2 ⇔(∑_(i=1)^n▒〖a_i〗^2 )-2(∑_(i=1)^n▒〖a_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )=(∑_(i=1)^n▒〖b_i〗^2 )-2(∑_(i=1)^n▒〖b_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )⇔∑_(i=1)^n▒〖2(a_i-b_i ) x_i 〗=∑_(i=1)^n▒(a_i+b_i )(a_i-b_i ) . 最后出来的这个等式就是垂直平分图形的方程。 回到题目中,对于∀A_1,A_2,…,A_(n+1)∈α,取A_1,A_2为一对,A_2,A_3为一对,……,A_n,A_(n+1)为一对代入垂直平分图形的方程中,惊奇地发现得到的线性方程组与思路1中相同,接下来的解法也相同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值