第四章 矩阵分解

矩阵分解

奇异值分解:

在这里插入图片描述

A = U Σ V H Σ = [ Δ 0 0 0 ] A = U\Sigma V^H\\ \Sigma =\left[ \begin{matrix} \Delta & 0 \\ 0 &0 \end{matrix} \right] A=UΣVHΣ=[Δ000]

U U U V V V都是酉矩阵,满足 U T U = I , V T V = I U^TU=I,V^TV=I UTU=I,VTV=I

U U U 的列向量就是 A A H AA^H AAH标准正交特征向量, λ i \lambda_i λi A A H AA^H AAH 的特征值

V V V的列向量就是 A H A A^HA AHA标准正交特征向量, μ i \mu_i μi A H A A^HA AHA 的特征值,显然特征值分解不唯一(因为特征向量不唯一,特征向量标准正交化时也不唯一)。

其中
Δ = [ α 1 α 2 ⋱ α r ] \Delta=\left[ \begin{matrix} \alpha_1 & \\ & \alpha_2 &\\ & &\ddots\\ &&&\alpha_r \end{matrix} \right] Δ= α1α2αr
其中 r r r 为奇异值个数。 α i \alpha_i αi 就是矩阵 A A A 的奇异值。

因为 λ i = μ i = α i \sqrt{\lambda_i} =\sqrt{\mu_i}=\alpha_i λi =μi =αi

所以只需要求出 A H A A^HA AHA 或者 A A H AA^H AAH里面较为简单的那个矩阵的特征值和特征向量。

如:求出 A H A A^HA AHA 的特征值 λ i \lambda_i λi 和 特征向量 U i U_i Ui后,就可以直接求得
V i = A H U i Δ − 1 V_i = A^HU_i\Delta^{-1} Vi=AHUiΔ1
求法:
请添加图片描述

正交三角分解(UR分解)

要求 A A A 为方阵:
A = U R , 其中 U 是酉矩阵, R 是正线上三角矩阵 {\large A = UR}, \\其中U是酉矩阵,R是正线上三角矩阵 A=UR其中U是酉矩阵,R是正线上三角矩阵
直接看计算过程:

第一步:对 A = [ α 1 , α 2 , … , α n ] A=[\alpha1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn]的列向量标准正交化

正交化:
β 1 = α 1 β i = α i − ( α i , β 1 ) ( β 1 , β 1 ) β 1 − ( α i , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α i , β i − 1 ) ( β i − 1 , β i − 1 ) β i − 1 \begin{align} \beta_1 &= \alpha_1\\ \beta_i &= \alpha_i - \frac{(\alpha_i,\beta_1)}{(\beta_1,\beta_1)}\beta_1- \frac{(\alpha_i,\beta_2)}{(\beta_2,\beta_2)}\beta_2-\dots-\frac{(\alpha_i,\beta_{i-1})}{(\beta_{i-1},\beta_{i-1})}\beta_{i-1} \end{align} β1βi=α1=αi(β1,β1)(αi,β1)β1(β2,β2)(αi,β2)β2(βi1,βi1)(αi,βi1)βi1
标准化: η i = β i ∣ ∣ β ∣ ∣ \Large \eta_i=\frac{\beta_i}{||\beta||} ηi=∣∣β∣∣βi

再找到 α i \alpha_i αi η i \eta_i ηi 之间的数量关系,这是先通过 η i \eta_i ηi β i \beta_i βi ,再通过 β i \beta_i βi α i \alpha_i αi 找到的。

在这里插入图片描述
在这里插入图片描述

谱分解

要求 A A A 为正规矩阵,即 A H A = A A H A^HA=AA^H AHA=AAH
A = [ α 1 , α 2 , … , α n ] [ λ 1 λ 2 ⋱ λ n ] [ α 1 H α 2 H ⋮ α n H ] = λ 1 α 1 α 1 H + λ 2 α 2 α 2 H + ⋯ + λ n α n α n H = ∑ i = 1 r λ i ∑ j = 1 n i α i j α i j H   = ∑ λ i G i \large {\begin{align} A &= [\alpha_1,\alpha_2,\dots,\alpha_n] \left[ \begin{matrix} \lambda_1 & \\ & \lambda_2 &\\ & &\ddots\\ & & &\lambda_n \end{matrix} \right ] \left[ \begin{matrix} \alpha_1^H\\ \alpha_2^H\\ \vdots\\ \alpha_n^H \end{matrix} \right]\\ &=\lambda_1\alpha_1\alpha_1^H + \lambda_2\alpha_2\alpha_2^H + \dots +\lambda_n\alpha_n\alpha_n^H\\ &=\sum_{i=1}^r \lambda_i\sum_{j=1}^{n_i}\alpha_{ij}\alpha_{ij}^H\\\ &=\sum\lambda_i G_i\\ \end{align} } A =[α1,α2,,αn] λ1λ2λn α1Hα2HαnH =λ1α1α1H+λ2α2α2H++λnαnαnH=i=1rλij=1niαijαijH=λiGi

计算:

第一步:求 A A A 的特征值和特征向量 [ α 1 , α 2 , … , α n ] \large[\alpha_1,\alpha_2,\dots,\alpha_n] [α1,α2,,αn]

第二步:将有重根的特征值对应的特征向量正交化。

第三步:把所有特征向量单位化为 [ η 1 , η 2 , … , η n ] \large[\eta_1,\eta_2,\dots,\eta_n] [η1,η2,,ηn]

第三步:于是 G i = η i 1 η i 1 H + η i 2 η i 2 H + ⋯ + η i m η i m H , m 为 λ i 对应的几何重数 \large G_i = \eta_{i1} \eta_{i1}^H + \eta_{i2} \eta_{i2}^H + \dots+\eta_{im} \eta_{im}^H,m为\lambda_i 对应的几何重数 Gi=ηi1ηi1H+ηi2ηi2H++ηimηimHmλi对应的几何重数
最后: A A A = ∑ λ i G i \large \sum\lambda_iG_i λiGi

谱分解还有一种特殊的情况
A A A 为可对角化的矩阵时,谱分解可以这么来求;

  1. A A A 的特征值,特征向量,得到可逆矩阵 P P P P − 1 A P = Λ P^{-1}AP = \Lambda P1AP=Λ
  2. ( P − 1 ) T = ( β 1 , β 2 , … , β n ) (P^{-1})^T=(\beta_1, \beta_2, \dots, \beta_n) (P1)T=(β1,β2,,βn)
  3. G i = ∑ j = 1 m α i j β i j T G_i = \sum\limits_{j=1}^{m}\alpha_{ij}\beta_{ij}^T Gi=j=1mαijβijT,其中 m m m 为特征值 λ i \lambda_i λi 对应的代数重数。
    原理如下,因为 P − 1 A P = Λ = d i a g ( λ 1 , λ 2 , … , λ n ) \large P^{-1}AP=\Lambda = diag(\lambda_1,\lambda_2,\dots,\lambda_n) P1AP=Λ=diag(λ1,λ2,,λn)
    在这里插入图片描述
    注: A H 中 i 需要变 − i A^H中 i 需要变-i AHi需要变i,如: α = [ 1 , 2 , − i ] T \alpha = [1, 2, -i]^T α=[1,2,i]T α H = [ 1 , 2 , i ] \alpha^H=[1,2,i] αH=[1,2,i]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值