若一n行n列的复数矩阵U满足 其中为n阶单位矩阵,为U的共轭转置,为酉矩阵(英文: Unitary Matrix, Unitary 是归一或单位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵: 。 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实矢量的内积类似, 酉矩阵U不改变两个复矢量的内积: 若为n阶方阵,则下列条件等价: 是酉矩阵是酉矩阵的列矢量构成内积空间Cn上的一组正交基的行矢量构成内积空间Cn上的一组正交基 酉矩阵的特征值都是模为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。 酉矩阵是正规矩阵,由谱定理知,酉矩阵U可被分解为 其中V是酉矩阵,是主对角线上元素绝对值为1的对角阵。 对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。