酉矩阵

若一n行n列的复数矩阵U满足

U^\dagger U = UU^\dagger = I_n\,

其中I_n\,为n阶单位矩阵U^\dagger \,U共轭转置,为酉矩阵(英文: Unitary Matrix, Unitary 是归一单位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵:

U^{-1} = U^\dagger \,\;

若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实矢量的内积类似,

\langle Gx, Gy \rangle = \langle x, y \rangle

酉矩阵U不改变两个复矢量的内积:

\langle Ux, Uy \rangle = \langle x, y \rangle

U \,为n阶方阵,则下列条件等价:

  1. U \,是酉矩阵
  2. U^\dagger \,是酉矩阵
  3. U \,的列矢量构成内积空间Cn上的一组正交基
  4. U \,的行矢量构成内积空间Cn上的一组正交基

酉矩阵的特征值都是模为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。

酉矩阵是正规矩阵,由谱定理知,酉矩阵U可被分解为

U = V\Sigma V^*\;

其中V是酉矩阵,\Sigma是主对角线上元素绝对值为1的对角阵。

对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值