矩阵笔记4:矩阵分析(第三版)-史荣昌-第四章:矩阵分解


0 笔记说明

参考书籍为:
在这里插入图片描述
本笔记主要是为了方便自己日后复习。由于未学习LaTeX,我会上传教材图片或者手写图片代替部分公式或内容。博客主要分为两部分:【1 书本内容】与【2 听课笔记】,前者为对教材中重要定理、定义的整理,后者为自己在矩阵上课时的笔记的二次书面整理。根据自身学习需要,我可能会增加必要内容。

本篇博客是关于第四章的内容,下面开始即为正文。


1 书本内容

1.1 矩阵的满秩分解

1.2 矩阵的正交三角分解(UR、QR分解)

1、列满秩矩阵的QR分解:设A为复数域上的m×r阶矩阵,且rank(A)=r,即A是列满秩矩阵时,A可以唯一地分解为A=UR,其中U是m×r阶酉矩阵,rank(U)=r,R是r阶正线上三角阵。

2、行满秩矩阵的QR分解:设A为复数域上的r×n阶矩阵,且rank(A)=r,即A是行满秩矩阵时,A可以唯一地分解为A=LU,其中U是r×n阶酉矩阵,rank(U)=r,L是r阶正线下三角阵。

3、满秩矩阵的QR分解:设A是复数域上的满秩n阶方阵,则A可以唯一地分解为A=UR或A=R1U1。其中U、U1是n阶酉矩阵,R是正线上三角阵,R1是正线下三角阵,即R和R1的主对角线上的元素全是正的。

1.3 矩阵的奇异值分解

1、对于任何一个矩阵A都有:rank(AAH)=rank(AHA)=rank(A)=rank(AH)

2、若A是正规矩阵,则A的奇异值是A的非零特征值的模长。证明过程:对于正规矩阵A,存在酉矩阵U,满足:
在这里插入图片描述
则:
在这里插入图片描述
于是AAH的特征值为:
在这里插入图片描述
即AAH的特征值为:λ1222,…,λn2,设λ12,…,λr是A的非零特征值,则A的奇异值为||λ1||,||λ2||,…,||λr||,得证。

1.4 矩阵的极分解

由于时间问题,省略这一部分,以后用到才会补。

1.5 矩阵的谱分解

由于时间问题,省略这一部分,以后用到才会补。


2 听课笔记

2.1 矩阵的满秩分解

1、矩阵的满秩分解:若A为复数域上的m×n阶矩阵,且rank(A)=r,则一定存在矩阵B、C,使得A=BC,其中B为复数域上的m×r阶矩阵,C为复数域上的r×n阶矩阵,且rank(B)=rank(C)=r,即B、C分别为列满秩、行满秩矩阵。证明过程如下:
在这里插入图片描述
2、矩阵的满秩分解是不唯一的:举个栗子,矩阵A为:
在这里插入图片描述
求A的满秩分解:
在这里插入图片描述

2.2 矩阵的正交三角分解(UR、QR分解)

1、满秩矩阵的QR分解
在这里插入图片描述
QR分解也称为正交三角分解、UR分解。

2、满秩方阵的QR分解定理:若A是复数域上的满秩方阵,则存在酉矩阵Q和正线上三角阵R,使得A=QR,且这样的分解是唯一的。存在性由上一条知识点可得出,下面证明分解是唯一的:
在这里插入图片描述
3、使用矩阵的QR分解解方程组Ax=b
在这里插入图片描述

2.3 矩阵的奇异值分解

奇异值分解:Singular Value Decomposition,以下简称SVD分解。

1、SVD分解定理:A为复数域上的m×n阶矩阵,rank(A)=r,一定存在m阶酉矩阵U和n阶酉矩阵V使得U-1AV为:
在这里插入图片描述
其中σ1≥σ2≥…≥σr>0,其中σi=sqrt(λi(AHA)),指矩阵AHA的第i个非零特征值的正平方根,其中i=1,2,…,r。σ12,…,σr称为矩阵A的奇异值。证明过程如下:
在这里插入图片描述
2、SVD分解求解过程:A为复数域上的m×n阶矩阵,则:
在这里插入图片描述
3、奇异值的性质:A为复数域上的m×n阶矩阵,则:
在这里插入图片描述
4、SVD分解的应用——图像压缩
在这里插入图片描述
原本需要存储m×n个数据,现在只需要存储r(m+n+1)个数据。如果考虑到图像中的相邻行、相邻列可能线性相关,因此r<<m,r<<n,故r(m+n+1)<<m×n,这还是无损压缩。若取k≤r,则需要存储k(m+n+1)个数据,这是有损压缩。

2.4 矩阵的极分解

2.5 矩阵的谱分解


3 补充内容

3.1 LU分解

A为复数域上的n阶可逆方阵,则A有唯一的LU分解⇔A的各阶顺序主子式均不为0。A有LU分解是指:A=LU,其中L为n阶单位下三角阵,即L的主对角线上均为1,U为n阶上三角阵。可见矩阵的LU分解不一定存在。证明过程如下:
在这里插入图片描述
下面证明A有唯一的LU分解:
在这里插入图片描述
如果矩阵的LU分解存在,那LU分解怎么求呢?
在这里插入图片描述
举个栗子:
在这里插入图片描述


END

矩阵分析荣昌第三版》是一本关于矩阵分析的著作,作者是荣昌。这本书是第三版,相比前两版对内容进行了更新和扩充。 矩阵分析是数学中的一个重要分支,广泛应用于各个学科领域。本书通过系统的介绍和分析,深入剖析了矩阵的理论和应用。 本书主要包括三个部分。第一部分介绍了基础知识,包括矩阵的定义、运算、特征值与特征向量等。通过学习这些基础知识,读者能够对矩阵有一个全面的了解,并为后续的内容打下坚实的基础。 第二部分是矩阵应用的进阶部分,探讨了矩阵在不同学科领域中的应用。比如在物理学中,矩阵可以用来描述力学系统的运动规律;在工程学中,矩阵可以用来解决电路、结构等问题;在经济学中,矩阵可以用来描述市场供需关系等等。通过学习这些实际应用,读者能够更好地理解矩阵在不同领域中的作用和意义。 第三部分是矩阵的高级应用,包括线性空间、线性变换、特征值分析等。这部分内容更深入,对于读者来说可能会有一定的难度,但通过学习这些高级应用,读者可以进一步提高矩阵分析的水平,解决更加复杂的问题。 总的来说,《矩阵分析荣昌第三版》提供了一个系统、全面并且深入的矩阵分析知识体系。对于数学爱好者、工程师、科学家等都是一本值得阅读的书籍,可以帮助读者更好地理解和应用矩阵分析
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值