第二章 Jordan标准型

第二章

smith标准型

[ d 1 ( λ ) d 2 ( λ ) ⋱ d r ( λ ) 0 ⋱ 0 ] \left[ \begin{matrix} d_1(\lambda) &\\ & d_2(\lambda) &\\ & &\ddots\\ &&&d_r(\lambda)\\ &&&&0\\ &&&&&\ddots\\ &&&&&&0 \end{matrix} \right] d1(λ)d2(λ)dr(λ)00
d i ( λ ) ∣ d i + 1 ( λ ) d_i(\lambda )| d_{i+1}(\lambda) di(λ)di+1(λ) ,即是 d i ( λ ) 整除 d i + 1 ( λ ) d_i(\lambda )整除 d_{i+1}(\lambda) di(λ)整除di+1(λ)
D k D_k Dk A A A k k k 阶行列式的最大公因式,注意是最大的、公因式。
化smith标准型的过程中,行变换和列变换都能用
smith标准型唯一

不变因子

D k ( λ ) D_k(\lambda ) Dk(λ)是全部 k k k 阶子式的最大公因式 D k ( λ ) D_k(\lambda ) Dk(λ)也称行列式因子。
d 1 ( λ ) = D 1 ( λ ) , d 2 ( λ ) = D 2 ( λ ) D 1 ( λ ) , … , d r ( λ ) = D r ( λ ) D r − 1 ( λ ) d_1(\lambda)=D_1(\lambda),d_2(\lambda)=\frac{D_2(\lambda)}{D_{1}(\lambda)},\dots,d_r(\lambda)=\frac{D_r(\lambda)}{D_{r-1}(\lambda)} d1(λ)=D1(λ)d2(λ)=D1(λ)D2(λ)dr(λ)=Dr1(λ)Dr(λ)
d k ( λ ) d_k(\lambda) dk(λ)就是不变因子。

初等因子

在这里插入图片描述

方阵的 Jordan 标准型

jordan块

J i = [ a i 1 a i 1 ⋱ ⋱ ⋱ 1 a i ] n i × n i \begin{align} J_i= \left [ \begin {matrix} a_i & 1 \\ & a_i & 1\\ & &\ddots &\ddots\\ & & &\ddots & 1\\ & & & &a_i \end {matrix} \right ]_{n_i \times n_i} \end{align} Ji= ai1ai11ai ni×ni

J i J_i Ji 的初等因子为 ( λ − a i ) n i (\lambda - a_i)^{n_i} (λai)ni:就是说初等因子为 ( λ − a i ) n i (\lambda - a_i)^{n_i} (λai)ni时,对应的 J o r d a n 块 Jordan块 Jordan 为(1)所示。

显然,所有 J o r d a n 块 Jordan块 Jordan 均是 1x1 的时候,也就是初等因子都是一次因式的时候,矩阵 A A A 可对角化。
代数重数:例如: ( λ − λ 1 ) n (\lambda - \lambda_1)^n (λλ1)n 中的 n n n 就是代数重数。
几何重数 n − r a n k ( A − λ 1 I ) n - rank(A-\lambda_1 I) nrank(Aλ1I) 就是几何重数。

难点:求相似变换矩阵 P P P , 使得 P − 1 A P = J P^{-1}AP=J P1AP=J

先求 J J J ,有两种方法求 J J J

  1. 根据特征值,代数重数,几何重数来求。 λ i \lambda_i λi的几何重数就是 J i J_i Ji的块数。
  2. 根据 s m i t h smith smith 标准型,初等因子来求。

例题:
A = [ 3 0 8 3 − 1 6 − 2 0 − 5 ] 求方阵  A  的  J o r d a n  标准形及其相似变换矩阵  P \\ \begin{aligned} \\ A = \left [ \begin {matrix} 3 & 0 &8 \\ 3 & -1 & 6\\ -2 & 0 &-5 \end {matrix} \right ] \end{aligned} \\ 求方阵\ A\ 的\ Jordan\ 标准形及其相似变换矩阵\ P A= 332010865 求方阵 A  Jordan 标准形及其相似变换矩阵 P

解 :先求 J = [ − 1 0 0 0 − 1 0 0 0 − 1 ]     P − 1 A P = J → A P = P J = [ X 1 , X 2 , X 3 ] [ − 1 0 0 0 − 1 0 0 0 − 1 ] = [ − X 1 , − X 2 , X 2 − X 3 ]   所以 : A X 1 = − X 1 , A X 2 = − X 2 , A X 3 = X 2 − X 3 得到: ( I + A ) X 1 = 0 , ( I + A ) X 2 = 0 , ( I + A ) X 3 = X 2   前两个方程同解,可求得基础解系:   α 1 = [ 0 , 1 , 0 ] T , α 2 = [ − 2 , 0 , 1 ] T   可以取 X 1 = α 1 ,但是不能简单地取 X 2 = α 2 因为如果选取不当 , 会使得第三个非齐次线性方程组无解。 \bold 解: 先求 J = \left [ \begin {matrix} -1 & 0 &0 \\ 0 & -1 & 0\\ 0 & 0 &-1 \end {matrix} \right ]\\ \ \\ \ P^{-1}AP=J\\ \to AP=PJ=[X_1,X_2,X_3] \left [ \begin {matrix} -1 & 0 &0 \\ 0 & -1 & 0\\ 0 & 0 &-1 \end {matrix} \right ] =[-X_1,-X_2,X_2-X_3]\\ \ \\所以 : AX_1 = -X_1,AX_2 = -X_2,AX_3 = X_2-X_3\\ 得到:(I+A)X_1=0,(I+A)X_2=0,(I+A)X_3=X_2\\ \ \\ 前两个方程同解,可求得基础解系:\\ \ \\ \alpha_1=[0,1,0]^T,\alpha_2=[-2,0,1]^T\\ \ \\ 可以取 X_1=\alpha_1,但是不能简单地取X_2=\alpha_2\\ 因为如果选取不当, 会使得第三个非齐次线性方程组无解。\\ :先求J= 100010001   P1AP=JAP=PJ=[X1,X2,X3] 100010001 =[X1,X2,X2X3] 所以:AX1=X1,AX2=X2,AX3=X2X3得到:(I+A)X1=0,(I+A)X2=0,(I+A)X3=X2 前两个方程同解,可求得基础解系: α1=[0,1,0]T,α2=[2,0,1]T 可以取X1=α1,但是不能简单地取X2=α2因为如果选取不当,会使得第三个非齐次线性方程组无解。
解这几个方程
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值