6、利用数据确定方程及决策树模型的研究

利用数据确定方程及决策树模型的研究

1. 从数据确定控制方程

1.1 案例背景

我们以摆的运动方程为例,使用正则化回归来确定生成数据集的控制微分方程。摆的角度 $\theta$ 满足的微分方程为:$\ddot{\theta} + \frac{b}{m}\dot{\theta} + \frac{g}{L} \sin \theta = 0$,其中点号表示对时间的导数。定义角速度 $\omega = \dot{\theta}$,可将其转化为一阶微分方程组:
$\begin{cases}
\dot{\omega} = -\frac{b}{m}\omega - \frac{g}{L} \sin \theta \
\dot{\theta} = \omega
\end{cases}$

1.2 数据处理步骤

  1. 数值求解 :使用随机初始条件对上述微分方程组进行数值求解,得到离散时间 $t_i$ 下的 $\theta(t_i)$ 和 $\omega(t_i) = \dot{\theta}(t_i)$。
  2. 估计加速度 :利用 $\ddot{\theta} = \dot{\omega} \approx \frac{\omega(t_i) - \omega(t_{i - 1})}{t_i - t_{i - 1}}$ 估计摆的加速度。
  3. 构建函数字典 :$x(t_i) = [\theta, \theta^2, \theta^3, \theta^4, \theta^5, \c
根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯和实时音视频整体解决方案,由北京野火无限网络科技有限公司维护和支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便与第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值