利用数据确定方程及决策树模型的研究
1. 从数据确定控制方程
1.1 案例背景
我们以摆的运动方程为例,使用正则化回归来确定生成数据集的控制微分方程。摆的角度 $\theta$ 满足的微分方程为:$\ddot{\theta} + \frac{b}{m}\dot{\theta} + \frac{g}{L} \sin \theta = 0$,其中点号表示对时间的导数。定义角速度 $\omega = \dot{\theta}$,可将其转化为一阶微分方程组:
$\begin{cases}
\dot{\omega} = -\frac{b}{m}\omega - \frac{g}{L} \sin \theta \
\dot{\theta} = \omega
\end{cases}$
1.2 数据处理步骤
- 数值求解 :使用随机初始条件对上述微分方程组进行数值求解,得到离散时间 $t_i$ 下的 $\theta(t_i)$ 和 $\omega(t_i) = \dot{\theta}(t_i)$。
- 估计加速度 :利用 $\ddot{\theta} = \dot{\omega} \approx \frac{\omega(t_i) - \omega(t_{i - 1})}{t_i - t_{i - 1}}$ 估计摆的加速度。
- 构建函数字典 :$x(t_i) = [\theta, \theta^2, \theta^3, \theta^4, \theta^5, \c
超级会员免费看
订阅专栏 解锁全文
1308

被折叠的 条评论
为什么被折叠?



