文章目录
容我废话两句
哈喽,兄弟们!
最近有许多小伙伴都在吐槽打工好难。
每天都是执行许多重复的任务
例如阅读新闻、发邮件、查看天气、打开书签、清理文件夹等等,
使用自动化脚本,就无需手动一次又一次地完成这些任务,
非常方便啊有木有?!
而在某种程度上,Python 就是自动化的代名词。
今天就来和大家一起学习一下,
用8个python自动化脚本提高工作效率~ 快乐摸鱼~
1、自动化阅读网页新闻
这个脚本能够实现从网页中抓取文本,然后自动化语音朗读,当你想听新闻的时候,这是个不错的选择。
代码分为两大部分,第一通过爬虫抓取网页文本呢,第二通过阅读工具来朗读文本。
需要的第三方库:
- Beautiful Soup - 经典的HTML/XML文本解析器,用来提取爬下来的网页信息;
- requests - 好用到逆天的HTTP工具,用来向网页发送请求获取数据;
- Pyttsx3 - 将文本转换为语音,并控制速率、频率和语音;
import pyttsx3
import requests
from bs4 import BeautifulSoup
voices = engine.getProperty('voices')
newVoiceRate = 130 ## Reduce The Speech Rate
engine.setProperty('rate',newVoiceRate)
engine.setProperty('voice', voices[1].id)
def speak(audio):
engine.say(audio)
engine.runAndWait()
text = str(input("Paste article\n"))
res = requests.get(text)
articles = []
for i in range(len(soup.select('.p'))):
article = soup.select('.p')[i].getText().strip()
articles.append(article)
text = " ".join(articles)
speak(text)
# engine.save_to_file(text, 'test.mp3') ## If you want to save the speech as a audio file
engine.runAndWait()
2、自动化数据探索
数据探索是数据科学项目的第一步,你需要了解数据的基本信息才能进一步分析更深的价值。
一般我们会用pandas、matplotlib等工具来探索数据,但需要自己编写大量代码,如果想提高效率,Dtale是个不错的选择。
Dtale特点是用一行代码生成自动化分析报告,它结合了Flask后端和React前端,为我们提供了一种查看和分析Pandas数据结构的简便方法。
我们可以在Jupyter上实用Dtale。
需要的第三方库:
- Dtale - 自动生成分析报告
### Importing Seaborn Library For Some Datasets
import seaborn as sns
### Printing Inbuilt Datasets of Seaborn Library
print(sns.get_dataset_names())
### Loading Titanic Dataset
df=sns.load_dataset('titanic')
### Importing The Library
import dtale
3、自动发送多封邮件
这个脚本可以帮助我们批量定时发送邮件,邮件内容、附件也可以自定义调整,非常的实用。
相比较邮件客户端,Python脚本的优点在于可以智能、批量、高定制化地部署邮件服务。
需要的第三方库&