使用Python采集某生活平台网站,进行数据可视化分析

哈喽大家好,今天我们来获取一下某个生活平台网站数据,进行可视化分析。

采集58的数据可以使用Python的requests库和beautifulsoup库,数据可视化分析可以使用matplotlib库和seaborn库。下面是一个简单的例子:

1、首先导入需要使用的模块

import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import seaborn as sns

2、设置请求头,模拟浏览器请求。

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}

3、发送请求获取页面

url = 'https://***/pinpaigongyu/pn/{page}/?minprice=2000_4000'
house_data = []
for page in range(1, 3):
    res = requests.get(url.format(page=page), headers=headers)
    soup = BeautifulSoup(res.text, 'html.parser')

4、解析页面获取数据

house_list = soup.select('.list > li')
for house in house_list:
    house_title = house.select('.title a')[0].string
    house_location = house.select('.add > a')[0].string.strip()
    house_price = house.select('.money > b')[0].string
    house_data.append({'title': house_title, 'location': house_location, 'price': house_price})

5、数据可视化分析

df = pd.DataFrame(house_data)
df['price'] = df['price'].astype(int)
df['location'] = df['location'].apply(lambda x: x.split('-')[0])
sns.boxplot(x='location', y='price', data=df)
plt.show()

这个例子以北京地区的品牌公寓为例,爬取了两页的房源数据,并使用箱线图对不同地区的房价进行了可视化分析。

需要注意的是,58的反爬比较严重,访问多了直接封IP。

我还给大家准备了25个非常实用的Python爬虫项目,帮助大家更好的学习爬虫。大家也可根据项目的需求,自己构建解决方法,提高编程水平。全套的python自学视频以及项目,已经打包完毕,文末名片可以 直接拿走学习了!

在这里插入图片描述

好了今天的分享就到这结束了,大家下次见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值