整数N进制以及其应用

整数的p进位制及其应用
<script> showElementsTop(0); </script>
  正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。
   基础知识
   给定一个 m 位的正整数 A ,其各位上的数字分别记为 ,则此数可以简记为: (其中 )。
   由于我们所研究的整数通常是十进制的,因此 A 可以表示成 10 次多项式,即 ,其中 ,像这种 10 的多项式表示的数常常简记为 。在我们的日常生活中,通常将下标 10 省略不写,并且连括号也不用,记作 ,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用 0 1 这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。
   为了具备一般性,我们给出正整数 A p 进制表示:
   ,其中
  而 仍然为十进制数字,简记为
  典例分析
  例1 .将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与八进制,并将其表示成多项式形式。
  分析与解答
  分析:用2作为除数(若化为p进位制就以p作为除数),除2004商1002,余数为0;再用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。所得的各次余数按从左到右的顺序排列出来,便得到所化出的二进位制的数。
解:
各次商数
被除数
除数
0
1
3
7
15
31
62
125
250
501
1002
2004
2
 
1
1
1
1
1
0
1
0
1
0
0
 
各次余数
 
  故
  同理,有
处理与数字有关的问题,通常利用定义建立不定方程来求解。
  例2. 求满足的所有三位数。   (1988年上海市竞赛试题)
  解:由于,则,从而
  当时,
  当时,
  当时,
  当时,
  当时,
  于是所求的三位数只有512。
  例3 .一个四位数,它的个位数字与百位数字相同。如果将这个四位数的数字顺序颠倒过来(即个位数字与千位数字互换,十位数字与百位数字互换),所得的新数减去原数,所得的差为7812,求原来的四位数。 (1979年云南省竞赛题)
  解:设该数的千位数字、百位数字、十位数字分别为,则
  原数                   
  颠倒后的新数               
  由 得7812=
  即   
  比较 式两端百位、十位、个位数字得
  由于原四位数的千位数字不能为0,所以,从而,又显然百位数字,所以。所以所求的原四位数为1979。
  例4. 递增数列1,3,4,9,10,12,13,……是由一些正整数组成,它们或是3的幂,或是若个不同的3的幂之和,求该数列的第100项。(第4届美国数学邀请赛试题)
  解:将已知数列写成3的方幂形式:
  
  易发现其项数恰好是自然数列对应形式的二进制表示:
  即
  由于100=
  所以原数列的第100项为
  例5 .1987可以在b进制中写成三位数,如果,试确定所有可能的。 (1987年加拿大数学竞赛试题)
  解:易知,从而
  即
  由。由
  又因为有12个正约数,分别为1,2,3,6,9,18,109,218,327,654,981,1962,所以,从而
  又由
  例6 .设是五位数(第一个数码不是零),是由取消它的中间一个数码后所成的四位数,试确定一切使得是整数。(第3届加拿大数学竞赛试题)
  解:设,其中
  而是整数,可证,即
  即,这显然是成立的;
  又可证,即
  即,这显然也是正确的。
  于是,即,又因为是整数,从而
  于是,即
  即,而但3 102为正整数)
  从而,显然,因而推得其中
  例7 .若是其各位数字和的倍数,这样的有多少个? (2004年南昌竞赛试题)
  解:(1)若为个位数字时,显然适合,这种情况共有9种;
  (2)若为100时,也适合;
  (3)若为二位数时,不妨设,则,由题意得
   即也就是
   若显然适合,此种情况共有9种;
   若,则由,故
   若,则显然可以,此时共有2+8=10个;
   若(9,则,这样的数共有24,42,48,84共4个;
   综上所述,共有9+1+9+10+4=33个。
  例8 .如果一个正整数在三进制下表示的各数字之和可以被3整除,那么我们称为“好的”,则前2005个“好的”正整数之和是多少?(2005年中国奥林匹克协作体夏令营试题)
  解:首先考虑“好的”非负整数,考察如下两个引理:
  引理1.在3个连续非负整数是非负整数)中,有且仅有1个是“好的”。
  证明:在这三个非负整数的三进制表示中,0,1,2各在最后一位出现一次,其作各位数字相同,于是三个数各位数字之和是三个连续的正整数,其中有且仅有一个能被3整除(即“好的”),引理1得证。
  引理2.在9个连续非负整数是非负整数)中,有且仅有3个是“好的”。把这3个“好的”非负整数化成三进制,0,1,2恰好在这三个三进制数的最后一位各出现一次。
  证明:由引理1不难得知在9个连续非负整数是非负整数)中,有且仅有3个是“好的”。
另一方面,在这三个“好的”非负整数的三进制表示中,最高位与倒数第三位完全相同,倒数第二位分别取0,1,2。若它使它们成为“好的”非负整数,则最后一位不相同,引理2得证。
  将所有“好的”非负整数按从小到大的顺序排成一列,设第2004个“好的”非负整数为,根据引理1,
  得,即
  设前个“好的”正整数之和为,由于前2003个“好的”正整数之和等于前2004个“好的”非负整数之和。
  因此
  又因为都是“好的”正整数。因此前2005年“好的”正整数之和是:
  
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值