神经网络模型学习笔记
神经元模型
1输入区
加权和 积和
2处理区
gi 活化规则
S 型函数 恒等函数 截斜坡函数 分段线性函数
3输出区
恒等函数 阀值函数 随机函数(正态分布)
神经元模型分类
简单线性 静态 动态 累计一段时间的输入进行处理
位势神经元
逻辑神经元
势态神经元
G神经元
联接方式
分层神经元
训练和学习
通过学习改变权值,使神经网络达到预想的目的。
乘积学习规则
差值学习规则
竞争学习规则
随机训练
逃离局部最小点的策略 仿真退火法
有师训练 给出输入输出样本 训练网络尽可能拟合这些样本