AdaBoost

AdaBoost 算法介绍

AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),

然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

AdaBoost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,

以及上次的总体分类的准确率,来修改每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,

最后将每次得到的分类器最后融合起来,作为最后的决策分类器。

Adaboost 算法步骤

输入:(X1,Y1),(X2,Y2),…(Xn,Yn)   Xi∈X (样本),Yi∈Y(分类)={+1,-1},

弱学习算法,M为训练的最大循环次数;
初始化训练数据的权值分布。每一个训练样本最开始时都被赋予相同的权重:1/N。


使用具有权值分布Dm的训练数据集学习,确定阈值,得到基本分类器


计算Gm(x)在训练数据集上的分类误差率


计算Gm(x)的系数

更新训练数据集的权值分布



这里,Zm是规范化因子


它使Dm+1成为一个概率分布

构建基本分类器的线性组合


经过M次循环后得到得到最终分类器


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值