AdaBoost

AdaBoost 算法介绍

AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),

然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

AdaBoost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,

以及上次的总体分类的准确率,来修改每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,

最后将每次得到的分类器最后融合起来,作为最后的决策分类器。

Adaboost 算法步骤

输入:(X1,Y1),(X2,Y2),…(Xn,Yn)   Xi∈X (样本),Yi∈Y(分类)={+1,-1},

弱学习算法,M为训练的最大循环次数;
初始化训练数据的权值分布。每一个训练样本最开始时都被赋予相同的权重:1/N。


使用具有权值分布Dm的训练数据集学习,确定阈值,得到基本分类器


计算Gm(x)在训练数据集上的分类误差率


计算Gm(x)的系数

更新训练数据集的权值分布



这里,Zm是规范化因子


它使Dm+1成为一个概率分布

构建基本分类器的线性组合


经过M次循环后得到得到最终分类器


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值