题目
题目描述
在火影忍者的世界里,令敌人捉摸不透是非常关键的。
我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。
影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。
针对不同的作战情况,鸣人可以选择制造出各种强度的影分身,有的用来佯攻,有的用来发起致命一击。
那么问题来了,假设鸣人的查克拉能量为 M M M,他影分身的个数最多为 N N N,那么制造影分身时有多少种不同的分配方法?
注意:
影分身可以分配0点能量。
分配方案不考虑顺序,例如
M
M
M=7,
N
N
N=3,那么 (2,2,3) 和 (2,3,2) 被视为同一种方案。
输入格式
第一行是测试数据的数目 t t t。
以下每行均包含二个整数 M M M和 N N N,以空格分开。
输出格式
对输入的每组数据 M M M和 N N N,用一行输出分配的方法数。
数据范围
0
≤
t
≤
20
0\le t\le 20
0≤t≤20,
1
≤
M
,
N
≤
10
1\le M, N\le 10
1≤M,N≤10
输入样例:
1
7 3
输出样例:
8
分析
用到的知识
1.dfs
2.Dp状态计算中很奇怪的分法。
代码
dfs
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 15;
int f[N];
int n, m;
LL ans;
// u代表dfs到了哪一位,s代表已经用了多少查克拉,st就是start的缩写代表着从多少开始,因为本题总不考虑顺序,所以我们自己规定一个不减小的顺序
void dfs(int u, int s, int st)
{
if (s > n) return; // 剪枝,如果大于查克拉总量 return
if (u == m + 1) // 找完所有位
{
if (s == n) ans++;
return;
}
for (int i = st; i <= n; i++)
{
f[u] = i;
dfs(u + 1, s + i, i);
}
}
int main()
{
int t;
cin >> t;
while (t--)
{
cin >> n >> m;
dfs(1, 0, 0);
cout << ans << endl;
ans = 0;
}
return 0;
}
Dp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 15;
int m, n;
int f[N][N];
int main()
{
int t;
cin >> t;
while (t--)
{
cin >> m >> n;
// 这里的初始化很烦,因为本题中可以分配0,所以总量为0时分成任意非负份的方案数均为1
for (int i = 0; i <= n; i++) f[0][i] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
{
f[i][j] = f[i][j - 1];
if (i >= j) f[i][j] += f[i - j][j];
}
cout << f[m][n] << endl;
memset(f, 0, sizeof(f));
}
return 0;
}