CRF原理介绍(以BILSTM-CRF模型为例)

本文详细介绍了BILSTM-CRF模型在命名实体识别(NER)任务中的应用,重点讲解了CRF层的作用,包括发射矩阵、转移矩阵、CRF损失函数和实际路径得分计算。通过实例分析了如何避免不良标签序列,并展示了CRF如何学习有效约束。文章还探讨了在推理阶段如何利用动态规划的维特比算法高效解码,以确定最佳标签序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. BiLSTM-CRF命名实体识别概要

假设有一个数据集,其中有两个实体类型,Person和Organization。但是,事实上,在我们的数据集中,我们有5个实体标签

B-Person
I- Person
B-Organization
I-Organization
O

设x是一个包含5个单词的句子:w0,w1,w2,w3,w4。在句子x中,[w0,w1]是一个Person实体,[w3]是一个Organization实体,其他都是“O”

1.1 模型介绍

BiLSTM-CRF模型总体结构图如图1所示
在这里插入图片描述

图1. BiLSTM-CRF模型总体结构图
  • 首先,将句子x中的每个单词表示为一个向量,其中包括单词的嵌入和字符的嵌入。字符嵌入是随机初始化的。词嵌入通常是从一个预先训练的词嵌入文件导入的。所有的嵌入将在训练过程中进行微调。
  • 第二,BiLSTM-CRF模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值