nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)
参数说明
input_size
输入特征的维度, 一般rnn中输入的是词向量,那么 input_size 就等于一个词向量的维度hidden_size
隐藏层神经元个数,或者也叫输出的维度(因为rnn输出为各个时间步上的隐藏状态)num_layers
网络的层数nonlinearity
激活函数bias
是否使用偏置batch_first
输入数据的形式,默认是 False,就是这样形式,(seq(num_step), batch, input_dim),也就是将序列长度放在第一位,batch 放在第二位dropout
是否应用dropout, 默认不使用,如若使用将其设置成一个0-1的数字即可birdirectional
是否使用双向的 rnn,默认是 False
注意某些参数的默认值在标题中已注明
输入输出shape
- input_shape = [时间步数, 批量大小, 特征维度] = [num_steps(seq_length), batch_size, input_dim]
- 在前向计算后会分别返回
输出
和隐藏状态h
,其中输出指的是隐藏层在各个时间步上计算并输出的隐藏状态,它们通常作为后续输出层的输⼊。需要强调的是,该“输出”本身并不涉及输出层计算,形状为(时间步数, 批量大小, 隐藏单元个数);隐藏状态指的是隐藏层在最后时间步的隐藏状态:当隐藏层有多层时,每⼀层的隐藏状态都会记录在该变量中;对于像⻓短期记忆(LSTM),隐藏状态是⼀个元组(h, c),即hidden state和cell state(此处普通rnn只有一个值)
隐藏状态h的形状为(层数, 批量大小,隐藏单元个数)
代码
rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens, )
# 定义模型, 其中vocab_size = 1027, hidden_size = 256
num_steps = 35
batch_size = 2
state = None # 初始隐藏层状态可以不定义
X = torch.rand(num_steps, batch_size, vocab_size)
Y, state_new = rnn_layer(X, state)
print(Y.shape, len(state_new), state_new.shape)
输出
torch.Size([35, 2, 256]) 1 torch.Size([1, 2, 256])
具体计算过程
H
t
=
i
n
p
u
t
∗
W
x
h
+
H
t
−
1
∗
W
h
h
+
b
i
a
s
H_t = input * W_{xh} + H_{t-1} * W_{hh} + bias
Ht=input∗Wxh+Ht−1∗Whh+bias
[batch_size, input_dim] * [input_dim, num_hiddens] + [batch_size, num_hiddens] *[num_hiddens, num_hiddens] +bias
可以发现每个隐藏状态形状都是[batch_size, num_hiddens], 起始输出也是一样的
注意:上面为了方便假设num_step=1