【HDU5584】LCM Walk(数学)

探讨ACM竞赛中的HDU5584题目,涉及从一个点通过LCM跳跃到其他点的问题。文章揭示了如何利用数学和递推关系找到从(x′,y′)到(x,y)的路径,简化坐标并展示解题思路。" 51169250,1133772,液态DSP 1.2.0的交叉编译指南,"['嵌入式开发', '液态DSP', '编译工具', '交叉编译', 'GCC']
摘要由CSDN通过智能技术生成

记录一个菜逼的成长。。

题目链接

题目大意:
从一个点(x,y)可以跳到(x+lcm,y)或(x,y+lcm)
给你一个点,问有几个点能够跳到这个点,包括当前点。

我们假设当前点为 (x,y) ,上一个跳到这个点的点为 (x,y)
首先 (x,y)<==>(x/gcd,y/gcd) ,先让两个数互质
那么他们的 lcm xy
以下点的坐标都已互质
我们假设 (x>y),(x,y)>(x+lcm,y)>(xy+x,y)>(x(y+1),y)>(x,y)
可以得到 x(y+1)=x,y=y 所以 x=xy+1,(x,y)=(x/y+1,y)
由当前步可以推到上一步,直接搜索即可

#include <bits/stdc++.h>
using namespace std;
int ans;
void solve(int x,int y)
{
    ans++;
    if(x < y)swap(x,y);
    if(x % (1+y) == 0)solve(x/(1+y),y);
}
int main()
{
    int T,cas = 1;scanf("%d",&T);
    while(T--){
        int x,y;
        ans = 0;
        scanf("%d%d",&x,&y);
        int g = __gcd(x,y);
        x /= g,y /= g;
        solve(x,y);
        printf("Case #%d: %d\n",cas++,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值