orlandowww
码龄9年
关注
提问 私信
  • 博客:73,909
    73,909
    总访问量
  • 8
    原创
  • 2,204,612
    排名
  • 38
    粉丝
  • 0
    铁粉

个人简介:兴趣方向:机器学习,自然语言处理

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:加拿大
  • 加入CSDN时间: 2016-04-05
博客简介:

orlandowww的博客

查看详细资料
个人成就
  • 获得32次点赞
  • 内容获得68次评论
  • 获得144次收藏
创作历程
  • 8篇
    2016年
TA的专栏
  • 自然语言处理NLP
    6篇
  • python
    1篇
  • 深度学习
    2篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于Attention Model的Aspect level文本情感分类---用Python+Keras实现

1、关于aspect level的情感分析给定一个句子和句子中出现的某个aspect,aspect-level 情感分析的目标是分析出这个句子在给定aspect上的情感倾向。Aspect level的情感分析相对于document level来说粒度更细。
原创
发布博客 2016.12.27 ·
12853 阅读 ·
10 点赞 ·
4 评论 ·
32 收藏

win10+64位 安装Theano并实现GPU加速

一.安装Anaconda我使用的Anaconda是对应的python2.7 配置环境变量:用户变量中的path变量(如果没有就新建一个),在后边追加C:\Anaconda;C:\Anaconda\Scripts; 不要漏掉分号,此处根据自己的Anaconda安装目录填写。二.安装MinGw打开cmd, 输入conda install mingw libpython,然后回车,会出现安装进度。
原创
发布博客 2016.11.23 ·
798 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

文本分类的python实现-基于Xgboost算法

描述训练集为评论文本,标签为 pos,neu,neg三种分类,train.csv的第一列为文本content,第二列为label。python的xgboost包安装方法,网上有很多详细的介绍参数XGBoost的作者把所有的参数分成了三类:1、通用参数:宏观函数控制。2、Booster参数:控制每一步的booster。3、学习目标参数:控制训练目标的表现。
原创
发布博客 2016.10.29 ·
8738 阅读 ·
3 点赞 ·
2 评论 ·
19 收藏

文本分类的python实现-基于SVM算法

描述训练集为评论文本,标签为 pos,neu,neg三种分类,train.csv的第一列为文本content,第二列为label。可以单独使用SVC训练然后预测,也可以使用管道pipeline把训练和预测放在一块。SVC的惩罚参数C:默认值是1.0。C越大,对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,泛化能力较
原创
发布博客 2016.10.29 ·
21202 阅读 ·
5 点赞 ·
11 评论 ·
95 收藏

Python读取csv的常用方法

csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据
原创
发布博客 2016.10.20 ·
5842 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

词性标注的python实现-基于平均感知机算法

平均感知机算法(Averaged Perceptron)感知机算法是非常好的二分类算法,该算法求取一个分离超平面,超平面由w参数化并用来预测,对于一个样本x,感知机算法通过计算y = [w,x]预测样本的标签,最终的预测标签通过计算sign(y)来实现。算法仅在预测错误时修正权值w。 平均感知机和感知机算法的训练方法一样,不同的是每次训练样本xi后,保留先前训练的权值,训练结束后平均所有权值。
原创
发布博客 2016.10.06 ·
5355 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

中文分词的python实现-基于HMM算法

隐马尔科夫模型(HMM)模型介绍HMM模型是由一个“五元组”组成:StatusSet: 状态值集合ObservedSet: 观察值集合TransProbMatrix: 转移概率矩阵EmitProbMatrix: 发射概率矩阵InitStatus: 初始状态分布
原创
发布博客 2016.09.29 ·
13538 阅读 ·
4 点赞 ·
7 评论 ·
43 收藏

中文分词的python实现-基于FMM算法

正向最大匹配算法(FMM)正向最大匹配算法(FMM)是一种基于词典的分词方法,思想很简单就是从左向右扫描寻找词的最大匹配,比如词典中同时含有“钓鱼”和“钓鱼岛”,那“钓鱼岛属于中国”就会被分词成“钓鱼岛/属于/中国”
原创
发布博客 2016.09.28 ·
5583 阅读 ·
3 点赞 ·
0 评论 ·
20 收藏