Leetcode[数组] 买卖股票的最佳时机 III -- 动态规划

本文介绍了如何使用动态规划解决LeetCode上的买卖股票最佳时机III问题。通过对比与买卖股票的最佳时机I的问题,解析了在多次交易时如何调整策略。代码中展示了如何在每次迭代中更新第一次和第二次买卖的成本与收益,从而找到最大总收益。
摘要由CSDN通过智能技术生成

0 题目描述

leetcode原题链接:买卖股票的最佳时机 III
在这里插入图片描述

1 动态规划

本题有比较巧妙的解法,和leetcode 121题:买卖股票的最佳时机一题的思路相似。
leetcode 121题:买卖股票的最佳时机的代码方案。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if not prices: return 0
        minprice, maxprofit = int(1e9), 0
        for price in prices:
                minprice = min(minprice, price)
                maxprofit = max(maxprofit, price -minprice)
        return maxprofit      

区别就在于本题是交易两次, 所以在第二次买的时候,价格其实是考虑用了第一次赚的钱去补贴一部分。

minbuy_1作为第一次买卖的成本,就等于第一次买入的股票价格;maxprof_1是第一次买卖的收益。minbuy_2作为第二次买卖的成本,此时不代表第二次买入股票的价格,而是第二次买入股票的价格减去第一次的收益。因此maxprof_2代表的也不是第二次买卖的收益,而是两次买卖的总收益。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if not prices: return 0
        minbuy_1, minbuy_2, maxprof_1, maxprof_2 = int(1e9), int(1e9), 0, 0
        for price in prices:
            minbuy_1 = min(minbuy_1, price)
            maxprof_1 = max(maxprof_1, price - minbuy_1)
            # 用第一次赚的钱抵消了一部分第二次买的钱
            minbuy_2 = min(minbuy_2, price - maxprof_1)
            maxprof_2 = max(maxprof_2, price - minbuy_2)
        return maxprof_2
参考资料

Leetcode[数组] 买卖股票的最佳时机 – 动态规划
Leetcode[数组] 买卖股票的最佳时机 II - 贪心算法
小白通俗易懂的解法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值