0 题目描述
leetcode原题链接: 34. 在排序数组中查找元素的第一个和最后一个位置
1 二分查找
直观的思路肯定是从前往后遍历一遍。用两个变量记录第一次和最后一次遇见 target 的下标,但这个方法的时间复杂度为
O
(
n
)
O(n)
O(n),没有利用到数组升序排列的条件。
由于数组已经排序,因此整个数组是单调递增的,我们可以利用二分法来加速查找的过程。
考虑 target 开始和结束位置,其实我们要找的就是数组中「第一个等于 target 的位置」(记为 leftIdx)和「第一个大于 target 的位置减一」(记为rightIdx)。
# 直接两次二分查找更简单,建立两个查找函数
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
if not nums or len(nums) == 0: return [-1, -1]
left = self.findFirstPosition(nums, target)
right = self.findLastPosition(nums, target)
if left == -1: return [-1, -1]
return [left, right]
def findFirstPosition(self, nums: List[int], target: int):
left, right = 0, len(nums) - 1
while left <= right:
mid = (left + right) // 2
if nums[mid] < target:
left = mid + 1
elif nums[mid] == target:
right = mid - 1
else:
right = mid - 1
if left != len(nums) and nums[left] == target:
return left
return -1
def findLastPosition(self, nums: List[int], target: int):
left, right = 0, len(nums) - 1
while left <= right:
mid = (left + right) // 2
if nums[mid] < target:
left = mid + 1
elif nums[mid] == target:
left = mid + 1
else:
right = mid - 1
return right
复杂度分析
时间复杂度:
O
(
l
o
g
n
)
O(log n)
O(logn) ,其中
n
n
n 为数组的长度。二分查找的时间复杂度为
O
(
l
o
g
n
)
O(log n)
O(logn),一共会执行两次,因此总时间复杂度为 O
O
(
l
o
g
n
)
O(log n)
O(logn)。
空间复杂度:
O
(
1
)
O(1)
O(1) 。只需要常数空间存放若干变量。