Leetcode 在排序数组中查找元素的第一个和最后一个位置 -- 二分查找

0 题目描述

leetcode原题链接: 34. 在排序数组中查找元素的第一个和最后一个位置
在这里插入图片描述

1 二分查找

直观的思路肯定是从前往后遍历一遍。用两个变量记录第一次和最后一次遇见 target 的下标,但这个方法的时间复杂度为 O ( n ) O(n) O(n),没有利用到数组升序排列的条件。
由于数组已经排序,因此整个数组是单调递增的,我们可以利用二分法来加速查找的过程。
考虑 target 开始和结束位置,其实我们要找的就是数组中「第一个等于 target 的位置」(记为 leftIdx)和「第一个大于 target 的位置减一」(记为rightIdx)。

# 直接两次二分查找更简单,建立两个查找函数
class Solution:
    def searchRange(self, nums: List[int], target: int) -> List[int]:
        if not nums or len(nums) == 0: return [-1, -1]
        left = self.findFirstPosition(nums, target)
        right = self.findLastPosition(nums, target)
        if left == -1: return [-1, -1]
        return [left, right]

    def findFirstPosition(self, nums: List[int], target: int):
        left, right = 0, len(nums) - 1
        while left <= right:
            mid = (left + right) // 2
            if nums[mid] < target:
                left = mid + 1
            elif nums[mid] == target:
                right = mid - 1
            else:
                right = mid - 1
        if left != len(nums) and nums[left] == target:
            return left
        return -1

    def findLastPosition(self, nums: List[int], target: int):
        left, right = 0, len(nums) - 1
        while left <= right:
            mid = (left + right) // 2
            if nums[mid] < target:
                left = mid + 1
            elif nums[mid] == target:
                left = mid + 1
            else:
                right = mid - 1
        return right

复杂度分析
时间复杂度: O ( l o g n ) O(log n) O(logn) ,其中 n n n 为数组的长度。二分查找的时间复杂度为 O ( l o g n ) O(log n) O(logn),一共会执行两次,因此总时间复杂度为 O O ( l o g n ) O(log n) O(logn)
空间复杂度: O ( 1 ) O(1) O(1) 。只需要常数空间存放若干变量。

参考资料

leetcode 官方题解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值