快速排序(Quick Sort)-- 高级排序算法

1 快速排序(Quick Sort)

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。

动图演示
在这里插入图片描述
代码实现

class Solution:
    def partition(self, nums, begin, end):
        pivot, counter = end, begin
        # counter 记录小于pivot的位置和个数
        for i in range(begin, end):
            if nums[i] < nums[pivot]:
            # if counter != i:
                temp = nums[counter]
                nums[counter] = nums[i]
                nums[i] = temp
                counter += 1

        temp = nums[pivot]
        nums[pivot] = nums[counter]
        nums[counter] = temp
        return counter

    def quicksort(self, nums, begin, end):
        if end <= begin: return
        pivot = self.partition(nums, begin, end)
        self.quicksort(nums, begin, pivot - 1)
        self.quicksort(nums, pivot + 1, end)

    def sortArray(self, nums: List[int]) -> List[int]:
        self.quicksort(nums, 0, len(nums) - 1)
        return nums

算法特性

  • 时间复杂度(最好): O ( n l o g n ) O(nlog n) O(nlogn)
  • 时间复杂度(最坏): O ( n 2 ) O(n^2) O(n2)
  • 时间复杂度(平均): O ( n l o g n ) O(nlog n) O(nlogn)
  • 空间复杂度: O ( n l o g n ) O(nlog n) O(nlogn)
  • 稳定性:不稳定

参考资料

十大经典排序算法(动图演示)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值