0 题目描述
leetcode原题链接:剑指 Offer 55 - II. 平衡二叉树
1 自顶向下的递归
这道题中的平衡二叉树的定义是:二叉树的每个节点的左右子树的高度差的绝对值不超过 11,则二叉树是平衡二叉树。根据定义,一棵二叉树是平衡二叉树,当且仅当其所有子树也都是平衡二叉树,因此可以使用递归的方式判断二叉树是不是平衡二叉树,递归的顺序可以是自顶向下或者自底向上。
这道题是计算二叉树深度的扩展,定义计算二叉树深度函数maxDepth(),即可判断二叉树是否平衡。具体做法类似于二叉树的前序遍历,即对于当前遍历到的节点,首先计算左右子树的高度,如果左右子树的高度差是否不超过 1,再分别递归地遍历左右子节点,并判断左子树和右子树是否平衡。这是一个自顶向下的递归的过程。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
if not root: return True
return (abs(self.maxDepth(root.left)-self.maxDepth(root.right)) <= 1) and self.isBalanced(root.left) and self.isBalanced(root.right)
def maxDepth(self, root):
if not root: return 0
return 1 + max(self.maxDepth(root.right),self.maxDepth(root.left))
复杂度分析
时间复杂度:
O
(
n
2
)
O \left(n^{2}\right)
O(n2),其中
n
n
n 是二叉树中的节点个数。 最坏情况下,二叉树是满二叉树,需要遍历二叉树中的所有节点, 时间复杂度是
O
(
n
)
。
O(n)_{\text {。 }}
O(n)。 对于节点
p
,
p,
p, 如果它的高度是
d
,
d,
d, 则 maxDepth
(
p
)
(p)
(p) 最多会被调用
d
d
d 次(即遍历到它的每一个祖先节点时) 。 对于平均的情况, 一棵树的高度
h
h
h 满足
O
(
h
)
=
O
(
log
n
)
,
O(h)=O(\log n),
O(h)=O(logn), 因为
d
≤
h
,
d \leq h,
d≤h, 所以总时间复杂 度为
O
(
n
log
n
)
O(n \log n)
O(nlogn) 。对于最坏的情况,二叉树形成链式结构,高度为
O
(
n
)
,
O(n),
O(n), 此时总时间复杂度为
O
(
n
2
)
O\left(n^{2}\right)
O(n2)
空间复杂度: O ( n ) O(n) O(n),其中 n n n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n 。 n_{\text {。 }} n。
2 自底向上的递归 – 剪枝
方法一由于是自顶向下递归,因此对于同一个节点,函数 maxDepth() 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 maxDepth() 只会被调用一次。
思路是对二叉树做后序遍历,从底至顶返回子树最大高度,若判定某子树不是平衡树则 “剪枝” ,直接向上返回。对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定是非负整数),否则返回 −1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
return self.maxDepth(root) != -1
def maxDepth(self, root):
if not root: return 0
left = self.maxDepth(root.left)
if left == -1: return -1
right = self.maxDepth(root.right)
if right == -1: return -1
return max(left, right) + 1 if abs(left - right) < 2 else -1
复杂度分析
时间复杂度:
O
(
n
)
,
O (n),
O(n), 其中
n
n
n 是二叉树中的节点个数。使用自底向上的递归, 每个节点的计算高度 和判断是否平衡都只需要处理一次,最坏情况下需要遍历二叉树中的所有节点, 因此时间复杂度 是
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
,
O (n),
O(n), 其中
n
n
n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过
n
n
n。