剑指 Offer 55 - II. 平衡二叉树 -- 递归

该博客探讨了两种判断平衡二叉树的方法:自顶向下的递归和自底向上的递归。自顶向下方法通过计算二叉树深度并检查左右子树高度差来判断平衡,而自底向上方法利用后序遍历进行剪枝操作,提高效率。两种方法的时间复杂度分别为O(n^2)和O(n),空间复杂度均为O(n)。
摘要由CSDN通过智能技术生成

0 题目描述

leetcode原题链接:剑指 Offer 55 - II. 平衡二叉树
在这里插入图片描述

1 自顶向下的递归

这道题中的平衡二叉树的定义是:二叉树的每个节点的左右子树的高度差的绝对值不超过 11,则二叉树是平衡二叉树。根据定义,一棵二叉树是平衡二叉树,当且仅当其所有子树也都是平衡二叉树,因此可以使用递归的方式判断二叉树是不是平衡二叉树,递归的顺序可以是自顶向下或者自底向上。

这道题是计算二叉树深度的扩展,定义计算二叉树深度函数maxDepth(),即可判断二叉树是否平衡。具体做法类似于二叉树的前序遍历,即对于当前遍历到的节点,首先计算左右子树的高度,如果左右子树的高度差是否不超过 1,再分别递归地遍历左右子节点,并判断左子树和右子树是否平衡。这是一个自顶向下的递归的过程。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def isBalanced(self, root: TreeNode) -> bool:
        if not root: return True
        return (abs(self.maxDepth(root.left)-self.maxDepth(root.right)) <= 1) and self.isBalanced(root.left) and self.isBalanced(root.right)
        
    def maxDepth(self, root):
        if not root: return 0
        return 1 + max(self.maxDepth(root.right),self.maxDepth(root.left))

复杂度分析
时间复杂度: O ( n 2 ) O \left(n^{2}\right) O(n2),其中 n n n 是二叉树中的节点个数。 最坏情况下,二叉树是满二叉树,需要遍历二叉树中的所有节点, 时间复杂度是 O ( n ) 。  O(n)_{\text {。 }} O(n)  对于节点 p , p, p, 如果它的高度是 d , d, d, 则 maxDepth ( p ) (p) (p) 最多会被调用 d d d 次(即遍历到它的每一个祖先节点时) 。 对于平均的情况, 一棵树的高度 h h h 满足 O ( h ) = O ( log ⁡ n ) , O(h)=O(\log n), O(h)=O(logn), 因为 d ≤ h , d \leq h, dh, 所以总时间复杂 度为 O ( n log ⁡ n ) O(n \log n) O(nlogn) 。对于最坏的情况,二叉树形成链式结构,高度为 O ( n ) , O(n), O(n), 此时总时间复杂度为 O ( n 2 ) O\left(n^{2}\right) O(n2)

空间复杂度: O ( n ) O(n) O(n),其中 n n n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n 。  n_{\text {。 }} n 

2 自底向上的递归 – 剪枝

方法一由于是自顶向下递归,因此对于同一个节点,函数 maxDepth() 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 maxDepth() 只会被调用一次。
思路是对二叉树做后序遍历,从底至顶返回子树最大高度,若判定某子树不是平衡树则 “剪枝” ,直接向上返回。对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定是非负整数),否则返回 −1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。

class Solution:
    def isBalanced(self, root: TreeNode) -> bool:
        return self.maxDepth(root) != -1
        
    def maxDepth(self, root):
        if not root: return 0
        left = self.maxDepth(root.left)
        if left == -1: return -1
        right = self.maxDepth(root.right)
        if right == -1: return -1
        return max(left, right) + 1 if abs(left - right) < 2 else -1

复杂度分析
时间复杂度: O ( n ) , O (n), O(n), 其中 n n n 是二叉树中的节点个数。使用自底向上的递归, 每个节点的计算高度 和判断是否平衡都只需要处理一次,最坏情况下需要遍历二叉树中的所有节点, 因此时间复杂度 是 O ( n ) O(n) O(n)
空间复杂度: O ( n ) , O (n), O(n), 其中 n n n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n n n

参考资料

剑指 Offer 55 - I. 二叉树的深度 --后续遍历
平衡二叉树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值