sparkR在spark on yarn下的问题
官网上可以看到说明“Currently, SparkR supports running on YARN with the yarn-client mode.
但是不用修改任何东西,用standalone方式提交,马上正常。Stackoverflow上看到的情形也多是standalone的情况。
所以这种情况下,为了正常使用sparkR,还是直接standalone的方式。
#################################
yarn:
插图:
########################
Standalone:
插图:
############
#环境变量
.libPaths(c(.libPaths(), '/opt/hadoop/spark-latest/R/lib'))
Sys.setenv(SPARK_HOME = '/opt/hadoop/spark-latest')
Sys.setenv(PATH = paste(Sys.getenv(c('PATH')), '/opt/hadoop/spark-latest/bin', sep=':'))
Sys.setenv(HADOOP_CMD="/opt/cloudera/parcels/CDH/bin/hadoop")
Sys.setenv(HADOOP_HOME="/opt/cloudera/parcels/CDH/lib/hadoop")
Sys.setenv(HADOOP_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(YARN_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(HIVE_HOME="/opt/cloudera/parcels/CDH/lib/hive")
Sys.setenv(SCALA_HOME="/opt/hadoop/scala-latest")
#加载包
library("rJava")
library("rhdfs")
library("SparkR")
#初始化
#sc <- sparkR.init("yarn-client", "SparkR", "/opt/hadoop/spark-latest",list(spark.executor.memory="1g"))
rdd <- SparkR:::textFile(sc, '/user/hive/warehouse/pcp2/city_test.txt')
counts <- SparkR:::map(rdd, nchar)
SparkR:::take(counts, 3)
hdfs.init()
hdfs.cat("/user/hive/warehouse/pcp2/city_test.txt")
####################################### 附上帮助
[hadoop@snn conf]$ sparkR --help
Usage: ./bin/sparkR [options]
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
--help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.
[hadoop@snn conf]$
官网上可以看到说明“Currently, SparkR supports running on YARN with the yarn-client mode.
These steps show how to build SparkR with YARN support and run SparkR programs on a YARN cluster:”
具体见:
README.md
https://github.com/amplab-extras/SparkR-pkg
插图:
之前测试的sparkR只涉及到从hive获取数据源,没有问题,但是没有测试,执行R脚本的情形。
测试的结果是spark on yarn的时候,需要跑R脚本的情形下,发现抛出“RScript”找不到的情形,开始怀疑是R安装和环境变量PATH的问题。但是不用修改任何东西,用standalone方式提交,马上正常。Stackoverflow上看到的情形也多是standalone的情况。
所以这种情况下,为了正常使用sparkR,还是直接standalone的方式。
#################################
yarn:
#################################
插图:
########################
Standalone:
########################
插图:
############
#环境变量
.libPaths(c(.libPaths(), '/opt/hadoop/spark-latest/R/lib'))
Sys.setenv(SPARK_HOME = '/opt/hadoop/spark-latest')
Sys.setenv(PATH = paste(Sys.getenv(c('PATH')), '/opt/hadoop/spark-latest/bin', sep=':'))
Sys.setenv(HADOOP_CMD="/opt/cloudera/parcels/CDH/bin/hadoop")
Sys.setenv(HADOOP_HOME="/opt/cloudera/parcels/CDH/lib/hadoop")
Sys.setenv(HADOOP_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(YARN_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(HIVE_HOME="/opt/cloudera/parcels/CDH/lib/hive")
Sys.setenv(SCALA_HOME="/opt/hadoop/scala-latest")
#加载包
library("rJava")
library("rhdfs")
library("SparkR")
#初始化
#sc <- sparkR.init("yarn-client", "SparkR", "/opt/hadoop/spark-latest",list(spark.executor.memory="1g"))
rdd <- SparkR:::textFile(sc, '/user/hive/warehouse/pcp2/city_test.txt')
counts <- SparkR:::map(rdd, nchar)
SparkR:::take(counts, 3)
hdfs.init()
hdfs.cat("/user/hive/warehouse/pcp2/city_test.txt")
####################################### 附上帮助
[hadoop@snn conf]$ sparkR --help
Usage: ./bin/sparkR [options]
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
--help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.
[hadoop@snn conf]$