参考文章:神经网络介绍
一、神经元
这一神经网络的基本单元,神经元接受输入,对它们进行一些数学运算,并产生一个输出。

这里有三步。
首先,将每个输入(X1)乘以一个权重
:
接下来,将所有加权输入与偏置
相加:
最后,总和通过激活函数
传递:
激活函数
激活函数用于将无界输入转换为具有良好、可预测形式的输出。
常用的激活函数sigmoid:

你可以把它想象成,压缩零到负无穷的数字到[-1,0],压缩0到正无穷的数字到[0,1]
举个例子:
这里写成向量形式,假设权重W = {w1,w2} = {0,1},输入X = {x1,x2} = {2,3},偏置b为1。
那么有一下计算:
下面来实现下代码:
import numpy as np
def sigmoid(x):
# Our activation function: f(x) = 1 / (1 + e^(-x))
return 1 / (1 + np.exp(-x))
class Neuron:
def __init__(self, weights, bias):
self.weights = weights
self.bias = bias
def feedforward(self, inputs):
# Weight inputs, add bias, then use the activation function
total = np.dot(self.weights, inputs) + self.bias
return sigmoid(total)
weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4 # b = 4
n = Neuron(weights, bias)
x = np.array([2, 3]) # x1 = 2, x2 = 3
print(n.feedforward(x)) # 0.9990889488055994
二. 将神经元组合成神经网络
神经网络只不过是一堆连接在一起的神经元。下面是一个简单的神经网络的样子:

该网络有 2 个输入(x1和x2),一个带有 2 个神经元的隐藏层 (ℎ1和ℎ2),以及具有 1 个神经元 (o1).请注意,输入o1是来自ℎ1和h2- 这就是使它成为一个网络的原因。
隐藏层是输入(第一层)和输出(最后一层)之间的任何层。可以有多个隐藏层!
示例:前馈
让我们使用上图的网络,并假设所有神经元具有相同的权重w=[0,1],相同的偏差b=0,以及相同的 S 形激活函数。让h1,h2,o1表示它们所代表的神经元的输出。
如果我们传入输入会发生什么x=[2,3]?

用于输入的神经网络的输出x=[2,3]是0.7216很简单,对吧?
神经网络可以有任意数量的层,这些层中可以有任意数量的神经元。基本思想保持不变:通过网络中的神经元向前馈送输入,以在最后获得输出。为简单起见,在本文的其余部分,我们将继续使用上图的网络。
神经网络的代码实现:
import numpy as np
# ... code from previous section here
class OurNeuralNetwork:
'''
A neural network with:
- 2 in

本文介绍了神经网络的基本组成部分,包括神经元的工作原理、权重和偏置的作用,以及激活函数如Sigmoid的应用。通过前馈过程和反向传播算法,展示了如何训练神经网络以最小化损失,如使用均方误差(MSE)作为目标。
最低0.47元/天 解锁文章
3726

被折叠的 条评论
为什么被折叠?



