【莫队算法】[CodeForces - 617E/Round #340]XOR and Favorite Number

题目
分析:求异或的前缀和后用莫队算法即可。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define MAXN 100000
#define MAXM 100000
#define MAXK 1000000
using namespace std;
int block[MAXN+10],n,m,a[MAXN+10],k,cnt[MAXK*2+10],sum[MAXN+10];
long long ans[MAXM+10];
void Read(int &x){
    char c;
    while(c=getchar(),c!=EOF)
        if(c>='0'&&c<='9'){
            x=c-'0';
            while(c=getchar(),c>='0'&&c<='9')
                x=x*10+c-'0';
            ungetc(c,stdin);
            return;
        }
}
struct node{
    int l,r,i;
    bool operator<(const node& x)const{
        if(block[l]==block[x.l])
            return r<x.r;
        return block[l]<block[x.l];
    }
}q[MAXM+10];
void init(){
    Read(n),Read(m),Read(k);
    int i,t=sqrt(n+0.5);
    for(i=1;i<=n;i++){
        Read(a[i]),sum[i]=sum[i-1]^a[i];
        block[i]=(i+t-1)/t;
    }
    for(i=1;i<=m;i++){
        Read(q[i].l),Read(q[i].r);
        q[i].l--;
        q[i].i=i;
    }
    sort(q+1,q+m+1);
}
void solve(){
    int i,l=0,r=-1;
    long long ansn=0;
    for(i=1;i<=m;i++){
        while(r<q[i].r)
            ansn+=cnt[sum[++r]^k],cnt[sum[r]]++;
        while(r>q[i].r)
            cnt[sum[r]]--,ansn-=cnt[sum[r--]^k];
        while(l<q[i].l)
            cnt[sum[l]]--,ansn-=cnt[sum[l++]^k];
        while(l>q[i].l)
            ansn+=cnt[sum[--l]^k],cnt[sum[l]]++;
        ans[q[i].i]=ansn;
    }
}
void print(){
    for(int i=1;i<=m;i++)
        printf("%I64d\n",ans[i]);
}
int main()
{
    init();
    solve();
    print();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值