【动手学习深度学习】概率+代码实现

简单来说,机器学习就是做出预测。

#导包
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
fair_probs = torch.ones([6])/6
multinomial.Multinomial(1,fair_probs).sample()

tensor([0., 1., 0., 0., 0., 0.])

multinomial.Multinomial(10,fair_probs).sample()

tensor([1., 0., 3., 2., 1., 3.])

#模拟1000次投掷
#将结果存储为32位浮点数以进行除法
counts = multinomial.Multinomial(1000,fair_probs).sample()
counts / 1000 #相对频率作为估计值

tensor([0.1670, 0.1730, 0.1590, 0.1630, 0.1700, 0.1680])

#概率如何随着时间的推移收敛到真实概率
counts = multinomial.Multinomial(10,fair_probs).sample((500,)) #进行500组实验,每组抽取10个样本
cum_counts = counts.cumsum(dim=0) #按行累加
estimates = cum_counts / cum_counts.sum(dim=1,keepdims=True) #计算频率

d2l.set_figsize((6,4.5))
for i in range(6):
    d2l.plt.plot(estimates[:,i].numpy(),
                label=("P(die="+str(i+1)+")"))
d2l.plt.axhline(y=0.167,color='black',linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend()
#每条实线对应于骰⼦的6个值中的⼀个,并给出骰⼦在每组实验后出现值的估计概率。
#当我们通过更多的实验获得更多的数据时,这6条实体曲线向真实概率收敛。

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
def forward(self, l, ab, y, idx=None): K = int(self.params[0].item()) T = self.params[1].item() Z_l = self.params[2].item() Z_ab = self.params[3].item() momentum = self.params[4].item() batchSize = l.size(0) outputSize = self.memory_l.size(0) # the number of sample of memory bank inputSize = self.memory_l.size(1) # the feature dimensionality # score computation if idx is None: # 用 AliasMethod 为 batch 里的每个样本都采样 4096 个负样本的 idx idx = self.multinomial.draw(batchSize * (self.K + 1)).view(batchSize, -1) # sample positives and negatives idx.select(1, 0).copy_(y.data) # sample weight_l = torch.index_select(self.memory_l, 0, idx.view(-1)).detach() weight_l = weight_l.view(batchSize, K + 1, inputSize) out_ab = torch.bmm(weight_l, ab.view(batchSize, inputSize, 1)) # sample weight_ab = torch.index_select(self.memory_ab, 0, idx.view(-1)).detach() weight_ab = weight_ab.view(batchSize, K + 1, inputSize) out_l = torch.bmm(weight_ab, l.view(batchSize, inputSize, 1)) if self.use_softmax: out_ab = torch.div(out_ab, T) out_l = torch.div(out_l, T) out_l = out_l.contiguous() out_ab = out_ab.contiguous() else: out_ab = torch.exp(torch.div(out_ab, T)) out_l = torch.exp(torch.div(out_l, T)) # set Z_0 if haven't been set yet, # Z_0 is used as a constant approximation of Z, to scale the probs if Z_l < 0: self.params[2] = out_l.mean() * outputSize Z_l = self.params[2].clone().detach().item() print("normalization constant Z_l is set to {:.1f}".format(Z_l)) if Z_ab < 0: self.params[3] = out_ab.mean() * outputSize Z_ab = self.params[3].clone().detach().item() print("normalization constant Z_ab is set to {:.1f}".format(Z_ab)) # compute out_l, out_ab out_l = torch.div(out_l, Z_l).contiguous() out_ab = torch.div(out_ab, Z_ab).contiguous() # # update memory with torch.no_grad(): l_pos = torch.index_select(self.memory_l, 0, y.view(-1)) l_pos.mul_(momentum) l_pos.add_(torch.mul(l, 1 - momentum)) l_norm = l_pos.pow(2).sum(1, keepdim=True).pow(0.5) updated_l = l_pos.div(l_norm) self.memory_l.index_copy_(0, y, updated_l) ab_pos = torch.index_select(self.memory_ab, 0, y.view(-1)) ab_pos.mul_(momentum) ab_pos.add_(torch.mul(ab, 1 - momentum)) ab_norm = ab_pos.pow(2).sum(1, keepdim=True).pow(0.5) updated_ab = ab_pos.div(ab_norm) self.memory_ab.index_copy_(0, y, updated_ab) return out_l, out_ab
04-19

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是小蔡呀~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值