学习笔记|领域自适应(Domain adaption)——实现模型的自适应迁移

1. 领域自适应网络概述

有时候我们在某个领域训练出的一个模型,想迁移到另一个领域,这样我们就不需要每个领域都去标注大量的数据了。但是这两个领域的数据分布是有些差异,要如何办呢?比如我们在黑白图片上训练出了数字的识别模型,但是我们希望该模型用到彩色数字的识别上。如果直接将模型迁移过去,结果并不理想,在黑白图片上的测试准确率可以达到99.5%,但迁移到彩色图片上时测试准确率仅57.5%。这是由于黑白图片和彩色图片的分布不一样,那么如何处理这种情况呢?我们需要用到 “领域自适应(Domain Adaption)”
领域迁移

2. 领域自适应的基本思路

我们将有标签的、能够训练模型的领域称为源域(Source Domain),无标签或者只有少量标签的领域称为目标域(Target Domain),我们的目的是要将源域训练得到的模型迁移到目标域。但是源域数据和目标域数据的分布不一样,领域自适应的基本思路是设计一个特征提取器,使得从源域和目标域提取的特征分布是一样的,如下图所示。
领域自适应的基本思路
我们将数字识别任务分成特征提取器和标签预测器两个部分,特征提取器有若干层网络负责提取图片的特征,并输出一个向量,然后将这个向量交给标签预测器,标签预测器也有若干层,负责根据特征提取输出的向量预测图片所展示的数字。现在有一堆的源域数据,它们是有标签的,还有一堆目标域数据,它们是没有标签的。假设源域数据输入到特征提取器输出的结果是蓝色的点,而目标域数据输入到特征提取器输出的结果是红色的点。我们要训练这个特征提取器,尽可能地使蓝色的点和红色地点混在一起分不出差异。那么要如何训练这个特征提取器呢?

3. 域分类器的引入

除了上述的特征提取器和标签预测器外,我们再引入一个新的网络,叫做 “域分类器”。域分类器的任务就是负责鉴别特征提取器输出的特征是来自源域数据还是目标域数据。而特征提取器要尽量减小源域数据数据和目标域数据输出向量的差异,以骗过域分类器,使其无法正确的鉴别。说到这里,大家应该想到了前面的生成对抗网络(GAN),这两者确实很像。这里的特征提取器就相当于GAN的生成器,而这里的域分类器就相当于GAN的鉴别器。那么有一个问题,特征提取器似乎明显要占优势,比如一个极端的情况,特征提取器无论是何输入都输出0,那么鉴别器无论如何也无法鉴别出哪些来自源域,哪些来自目标域。但是这种情况其实是不会出现的。因为预测器也需要特征提取器输出的这个向量,用来判断图片的标签是什么。如果特征提取器无论输入是什么都输出0的话,那么预测器是无法根据这个向量来预测图片标签的。
领域自适应网络的训练
下面再利用数学符号把上述过程再理一下。首先,我们假设三个网络的参数分别为:特征提取器—— θ f \theta_f θf,标签预测器—— θ p \theta_p θp,域分类器—— θ d \theta_d θd。由于源域数据是有标签的,因此可以算出标签预测器的输出和源域数据标签之间的交叉熵,根据这个交叉熵可以定义一个Loss,设为 L L L。训练标签预测器的目标就是要最小化这个 L L L,即 θ p ∗ = min ⁡ θ p L \theta_{p}^{*}=\min _{\theta_{p}} L θp=θpminL。域分类器实际上是一个二分类器,它的任务是区分特征是来自源域还是目标域,这个分类任务也可以定义一个Loss,设为 L d L_d Ld。训练域分类器的目标就是要使这个 L d L_d Ld最小化,即 θ d ∗ = min ⁡ θ d L d \theta_{d}^{*}=\min _{\theta_{d}} L_{d} θd=θdminLd训练特征提取器的目标:一方面要使标签预测器尽量能正确预测出图片标签,即最小化 L L L;另一方面又要尽量骗过域分类器,使其不能正确鉴别,即要最大化 L d L_d Ld,也就是最小化 − L d -L_d Ld。因此可表示为
θ f ∗ = min ⁡ θ f L − L d \theta_{f}^{*}=\min _{\theta_{f}} L-L_{d} θf=θfminLLd

  • 9
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
以下是使用DANN(Domain Adaption Neural Network)进行风力发电预测的代码示例。该模型使用了迁移学习技术,将在一个领域(源域)训练的模型应用于另一个领域(目标域)中。这个例子中,我们将在一个地区收集的风力数据作为源域,然后将模型应用于另一个地区的风力数据作为目标域,以预测风力发电量。 首先,我们需要导入必要的库: ```python import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from keras.models import Sequential, Model from keras.layers import Dense, Input, Concatenate from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint ``` 然后我们可以读入源域和目标域的数据: ```python # 读入源域数据 source_data = pd.read_csv('source_data.csv') source_data = source_data.drop('date', axis=1) # 删除日期列 # 读入目标域数据 target_data = pd.read_csv('target_data.csv') target_data = target_data.drop('date', axis=1) # 删除日期列 ``` 接下来,我们需要将源域和目标域的数据进行预处理。在这个例子中,我们将使用标准化将数据缩放到相同的范围内: ```python # 将数据分为特征和目标 source_features = source_data.drop('power', axis=1) source_target = source_data['power'] target_features = target_data.drop('power', axis=1) target_target = target_data['power'] # 对特征进行标准化 scaler = StandardScaler() source_features = scaler.fit_transform(source_features) target_features = scaler.transform(target_features) ``` 然后,我们可以定义 DANN 模型。DANN 模型由三个部分组成:共享层,源域特定层和目标域特定层。共享层和源域特定层用于在源域数据上训练模型,而共享层和目标域特定层用于在目标域数据上进行预测。 ```python # 定义共享层 shared_layer = Sequential() shared_layer.add(Dense(32, input_dim=7, activation='relu')) shared_layer.add(Dense(16, activation='relu')) # 定义源域特定层 source_specific_layer = Sequential() source_specific_layer.add(Dense(8, input_dim=16, activation='relu')) source_specific_layer.add(Dense(1)) # 定义目标域特定层 target_specific_layer = Sequential() target_specific_layer.add(Dense(8, input_dim=16, activation='relu')) target_specific_layer.add(Dense(1)) # 定义DANN模型 input_layer = Input(shape=(7,)) shared = shared_layer(input_layer) source_specific = source_specific_layer(shared) target_specific = target_specific_layer(shared) output_layer = Concatenate()([source_specific, target_specific]) dann_model = Model(inputs=[input_layer], outputs=[output_layer]) ``` 接下来,我们需要定义损失函数。在 DANN 中,我们使用两个损失函数:源域损失和域分类损失。源域损失用于在源域数据上训练模型,而域分类损失用于在目标域数据上进行预测。 ```python # 源域损失 source_loss = 'mean_squared_error' # 域分类损失 def domain_loss(y_true, y_pred): # y_true: 1表示源域, 0表示目标域 # y_pred: 域分类器的预测 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(1 - y_pred)) # 总损失 def total_loss(y_true, y_pred): return source_loss(y_true, y_pred[:, 0]) + domain_loss(y_true, y_pred[:, 1]) ``` 然后,我们可以编译模型,并在源域数据上训练模型: ```python # 编译模型 dann_model.compile(optimizer=Adam(lr=0.001), loss=total_loss, metrics=[source_loss, domain_loss]) # 训练模型 dann_model.fit(source_features, np.column_stack((source_target, np.zeros(len(source_target)))), epochs=100, batch_size=32) ``` 在模型训练完成后,我们可以使用目标域数据进行预测: ```python # 在目标域数据上进行预测 target_predictions = target_specific_layer.predict(target_features) ``` 然后,我们可以使用预测的目标值和实际目标值之间的均方误差来评估模型的性能: ```python # 计算目标域数据的均方误差 mse = np.mean(np.square(target_predictions - target_target)) print("目标域数据的均方误差为:", mse) ``` 这就是使用 DANN 进行风力发电预测的代码示例。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值