1. 题目描述
给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和。
二叉搜索树保证具有唯一的值。
示例 1:
输入:root = [10,5,15,3,7,null,18], L = 7, R = 15
输出:32
示例 2:
输入:root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
输出:23
提示:
树中的结点数量最多为 10000 个。
最终的答案保证小于 2^31。
2. 第一种方法
由二叉搜索树的中序遍历是升序序列的性质:
第一想法就是中序遍历,挨个判断当前节点的值是否在 [L, R] 中,若不在就继续遍历;若在则将当前节点的值累加到 res 中。遍历结束后返回 res 即可。
(此处有个小技巧:因为中序遍历是升序的,所以一旦遍历到的节点值超过了右边界 R,就说明已经寻找完毕,后面的就不用再遍历了,直接 break 跳出循环即可。)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def rangeSumBST(self, root: TreeNode, L: int, R: int) -> int:
stack = []
res = 0
node = root
while stack or node:
while node:
stack.append(node)
node = node.left
node = stack.pop()
if node.val >= L and node.val <= R:
res += node.val
if node.val > R:
break
node = node.right
return res
3. 第二种方法
后来看第一种方法的运行时间不太理想,看了一下还是可能做了多余的工作,虽然排除了节点值 > R 时跳出循环的情况,但是节点值 < L 时的情况没有考虑到,如果 L 和 R 都接近中序遍历序列的末尾,那就会做一些无用的遍历浪费时间!
所以采用递归就可避免这种问题:
- 首先判断若根节点的值小于L,那就说明左子树不用找了,直接处理右子树即可;
- 若根节点的值大于R,那就说明右子树不用找了,直接处理左子树即可;
- 最后若根节点在 [L, R] 范围内,则既要处理左子树,又要处理右子树,还需加上根节点的值。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def rangeSumBST(self, root: TreeNode, L: int, R: int) -> int:
if not root:
return 0
elif root.val < L:
return self.rangeSumBST(root.right, L, R)
elif root.val > R:
return self.rangeSumBST(root.left, L, R)
else:
return self.rangeSumBST(root.right, L, R) + self.rangeSumBST(root.left, L, R) + root.val