【LeetCode 938】二叉搜索树的范围和

1. 题目描述

给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和。

二叉搜索树保证具有唯一的值。

示例 1:

输入:root = [10,5,15,3,7,null,18], L = 7, R = 15
输出:32

示例 2:

输入:root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
输出:23

提示:

树中的结点数量最多为 10000 个。
最终的答案保证小于 2^31。

2. 第一种方法

二叉搜索树的中序遍历是升序序列的性质:
第一想法就是中序遍历,挨个判断当前节点的值是否在 [L, R] 中,若不在就继续遍历;若在则将当前节点的值累加到 res 中。遍历结束后返回 res 即可。
此处有个小技巧:因为中序遍历是升序的,所以一旦遍历到的节点值超过了右边界 R,就说明已经寻找完毕,后面的就不用再遍历了,直接 break 跳出循环即可。)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def rangeSumBST(self, root: TreeNode, L: int, R: int) -> int:
        stack = []
        res = 0
        node = root
        while stack or node:
            while node:
                stack.append(node)
                node = node.left
            node = stack.pop()
            if node.val >= L and node.val <= R:
                res += node.val
            if node.val > R:
                break
            node = node.right
        return res

3. 第二种方法

后来看第一种方法的运行时间不太理想,看了一下还是可能做了多余的工作,虽然排除了节点值 > R 时跳出循环的情况,但是节点值 < L 时的情况没有考虑到,如果 L 和 R 都接近中序遍历序列的末尾,那就会做一些无用的遍历浪费时间!
所以采用递归就可避免这种问题:

  • 首先判断若根节点的值小于L,那就说明左子树不用找了,直接处理右子树即可;
  • 若根节点的值大于R,那就说明右子树不用找了,直接处理左子树即可;
  • 最后若根节点在 [L, R] 范围内,则既要处理左子树,又要处理右子树,还需加上根节点的值。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def rangeSumBST(self, root: TreeNode, L: int, R: int) -> int:
        if not root:
            return 0
        elif root.val < L:
            return self.rangeSumBST(root.right, L, R)
        elif root.val > R:
            return self.rangeSumBST(root.left, L, R)
        else:
            return self.rangeSumBST(root.right, L, R) + self.rangeSumBST(root.left, L, R) + root.val
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值