树-二叉树-二叉搜索树的基本概念
来源作者:Vamei 出处:http://www.cnblogs.com/vamei
树的特征和定义
树是元素的集合,树有多个节点(node),用以储存元素。某些节点之间存在一定的关系,用连线表示,连线称为边(edge)。边的上端节点称为父节点(parent),下端称为子节点(children)。
树有一个没有父节点的节点,称为根节点(root),没有子节点的节点称为叶节点(leaf)。
严格定义树的方法:
- 树是元素的集合。
- 该集合可以为空。这时树中没有元素,我们称树为空树 (empty tree)。
- 如果该集合不为空,那么该集合有一个根节点,以及0个或者多个子树。根节点与它的子树的根节点用一个边(edge)相连。
树的实现
二叉搜索树
二叉树(binary)是一种特殊的树,二叉树的每个节点最多只能有2个子节点。(二叉树特征)
二叉搜索树(binary search tree)是一种特殊的二叉树,二叉搜索树要求:每个节点都不比左子树的任意元素小,而且不比右子树的任意元素大。
二叉搜索树的删除方法:
有一种简单的替代操作,称为懒惰删除(lazy deletion)。在懒惰删除时,我们并不真正从二叉搜索树中删除该节点,而是将该节点标记为“已删除”。这样,我们只用找到元素并标记,就可以完成删除元素了。如果有相同的元素重新插入,我们可以将该节点找到,并取消删除标记。
懒惰删除的实现比较简单,可以尝试一下。树所占据的内存空间不会因为删除节点而减小。懒惰节点实际上是用内存空间换取操作的简便性。
Leetcode题目
题目描述
题目答案
思路描述:采用递归的方法进行搜索,并进行累加
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int rangeSumBST(TreeNode* root, int L, int R) {
if(root==NULL){
return sum;
}
if(root->val>=L&&root->val<=R){
sum+=root->val;
rangeSumBST(root->left, L, R);
rangeSumBST(root->right,L, R);
}else if(root->val>=L){
rangeSumBST(root->left, L, R);
}else if(root->val<=R){
rangeSumBST(root->right, L, R);
}
return sum;
}
private:
int sum=0;
};