pt直接转trt文件(tensorrt)

本文介绍了如何使用torch2trt库将PyTorch模型转换为TensorRT文件,特别提到了在Yolov5模型转换过程中的注意事项,包括避免在forward方法中使用非PyTorch方法,并分享了转换后的模型以Int8格式运行并在检测时的外部处理代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.需要第三方库torch2trt;pip install torch2trt;

2.from torch2trt import torch2trt 导入api

3.代码示例

import torch
from torch2trt import torch2trt
from torch2trt import TRTModule
import datetime

model = torch.load('best.pt').cuda()

trx = torch.ones((1, 3, 608, 608)).cuda()

model_trt = torch2trt(model , [trx])
torch.save(model_trt.state_dict(), 'best_trt.pth')

model_trt = TRTModule()

model_trt.load_state_dict(torch.load('best_trt.pth'))

y_trt = model_trt(trx)

 

本人yolov5模型转换成功(转trt文件forward方法中最好别出现非pytorch方法,否则可能会转换失败,博主这里进行了预处理,转换成功);转换为int8格式的模型文件;并且成功运行,在detect的时候,通过外部编写detect处理代码,代码如下:

    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

    def detect(pre)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值